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Executive Summary 

This document introduces the initial iteration in the process of implementing remote inspection tools 
for critical infrastructures. Within the scope of WP7, it represents the inaugural effort to implement 
the concepts introduced in D7.1, aiming to address all the requirements of CI stakeholders outlined in 
D3.2. The progression of the content herein will be evident in subsequent iterations (D7.3-D7.6). 

This is a technical report wherein each primary section is dedicated to detailing a component of the 
comprehensive remote inspection module, namely: the satellite imaging inspection module, the UAV 
imaging inspection module, and the user interface that facilitates interaction with the aforementioned 
modules and displays the results. 

The proposed solutions leverage artificial intelligence computer vision neural models for image 
analysis to extract data regarding the infrastructure's condition. The content provides an examination, 
execution, and testing of state-of-the-art models in critical tasks such as vegetation monitoring, 
anomaly detection, open-vocabulary object detection/segmentation, Visual Question Answering 
(VQA), and 3D reconstruction. Among the models incorporated in the suggested solutions are some of 
the most groundbreaking developments from leading industry firms, Visual Language Models (VLM) 
and Large Language Models (LLM), featuring cutting edge architectures like Transformers. Thus, this 
document allows readers to discern the applicability and adaptability of these significant 
advancements to specific challenges in real-world scenarios. 

The development status of the SW solutions aligns with expectations, with the PoCs of "Pilot 0 - lab 
validation" achieving a TRL of 5 or higher, and the laboratory integration of the UAV platform 
successfully completed, encompassing all essential inspection components. The outcomes from the 
two visual image inspection sub-modules indicate that the current tool can address, wholly or partially, 
challenges in real-world settings. Furthermore, the delineation of the module architectures and the 
deployment plan that are included, substantiate a well-defined roadmap towards achieving the set 
objective. 

With all the content provided, D7.2 establishes a robust foundation upon which further development 
can ensue, incorporating additional features and models to enhance usability and address as many 
inspection challenges as possible. 
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1 Introduction 

1.1 Purpose of the document 

The SUNRISE project is designed to bolster the resilience of essential services within Europe's Critical 
Infrastructure (CI), equipping operators and authorities with the necessary tools to handle situations 
similar to those encountered during the recent pandemic. To achieve this, the project proposes the 
development of a strategy and a series of tools, all aimed at ensuring service resilience and the 
continuity of operations. Included in this set of tools is the inspection module of WP7, which primarily 
focuses on the implementation of solutions for remote inspection of critical infrastructures. 

In this context, the main goal of D7.2, "Infrastructure inspection tool and training guide V1", is to clearly 
and succinctly outline the approach and the initial steps taken during the development of the tools 
designed to inspect key elements and structures using information collected remotely via satellites or 
UAVs. The description of the document included in the DoA states "Initial infrastructure inspection 
tool’s components tested in labs and released with usage guidelines" which is the purpose and the 
content included. 

Based on this, D7.2 aims to serve as a foundation for introducing and justifying the proposed solutions 
during the first-year review of the SUNRISE project. It also acts as a support document, guiding the 
user in the application of the proposed solutions. This document, technically focused, also intended to 
serve as a reference guide if there is a need for detailed information about the methods, architectures, 
integrations, hardware components, and algorithms implemented in this initial project phase. 

Therefore, this text seeks to describe the current state of the visual inspection module at M12 of the 
project. This includes the initial conceptual approach, the current development status of the 
submodules, and the results obtained during the project's Pilot 0. The latter includes laboratory tests 
using open-source data, available datasets, and small-scale proof-of-concept tests on actual data 
manually collected at the pilot facilities. By M12 month of the project, the technology presented in this 
deliverable should reach a Technology Readiness Level (TRL) of 5, indicating that the technology has 
been verified in a relevant environment. 

1.2 Relation to other project work  

This deliverable represents the second output envisaged from WP7, and thus, reflects the work related 
to the tasks it encompasses, namely: T7.1 Visual infrastructure inspection with satellite images; T7.2 
Visual infrastructure inspection with UAVs; T7.3 User interfaces for remote infrastructure inspection; 
T7.4 Continuous integration and testing; and lastly, T7.5 Demonstration, training, evaluation, and 
validation. WP7, like all technical WPs, is interconnected with the management WP (WP9), 
dissemination and exploitation (WP8), ethical requirements (WP10), collaboration (WP1), strategy 
(WP2), and design (WP3). Close and necessary collaboration with all these work packages is in place, 
but it's important to emphasize the primary link with WP3, which is responsible for gathering 
requirements, maintaining unity, and serving as an interface between the different modules of the 
overall tool designed in each of the technical WPs.  

Concerning already delivered documents and those currently in progress, D7.2 has a strong 
relationship with D7.1 and D3.2. On one hand, D7.1, "Infrastructure inspection conceptualization," is 
the foundation upon which the developments of this document are based, as it provides a detailed 
introduction to the pilots and their various challenges (D7.1 - chapter 2), and presents the conceptual 
plan proposed for the development of the tools of this module (D7.1 - chapter 3). On the other hand, 
D3.2 incorporates the second iteration of the requirements extracted during the needs analysis of the 
CI stakeholders and the technical approach of the solutions, and as such, it represents a significant 
input for the tools described in this deliverable. 
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1.3 Structure of the document 

This document is divided into six (6) primary chapters, including the current one, reflecting the purpose 
of the document, its framework within the project, and the structure of its contents. The other five 
include: 

 Chapter 2 provides the general context and a high-level design of the satellite inspection tool's 
architecture. It describes the tool's modules, namely ‘Infrastructure change detection’ and 
‘Vegetation monitoring’, presents their lab validation, and discusses deployment strategies. 

 Chapter 3 introduces the context, high-level design, and description of the UAV inspection tool. It 
contains a detailed breakdown of the tool's modules, including ‘Object detection and semantic 
segmentation’, ‘VQA’ (Visual Question Answering), and ‘3D virtualization’, along with their 
respective lab validation and deployment details. It concludes with a discussion on UAV platform lab 
integration. 

 Chapter 4 discusses the general context, high-level design of the user interface architecture for 
remote infrastructure inspection and presents mockups of the dashboards. It details the process of 
integration and validation, as well as the deployment strategy. 

 Chapter 5 covers the execution of lab pilot trials, updating the content introduced in D7.1. 

 Chapter 6, final chapter, offers an overall summation of the findings and outcomes of the work 
detailed in the previous chapters. 

It should be noted that even though each of the sub-modules has its own distinct chapter, satellite 
inspection, UAV inspection, and GUI, they are all part of the same remote inspection module, so the 
integration of the tools at the end of the project must be complete. 
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2 Satellite inspection tool 

This module will provide AI-supported satellite-imagery-based CI inspection tools. Satellite imagery 
and accompanying AI tools provide the ability to monitor the physical infrastructure in a non-invasive 
and continuous manner. This can also serve as a trigger to activate the more costly and labour-
intensive UAV-based inspection (Section 3), which is offering a more targeted, localized area-focused 
monitoring of regions of interest. This section builds upon D7.1 by introducing individual sub-modules 
in more detail (Sections 2.3.1 and 2.3.2), as well their lab validation results at TRL-5 level (Section 2.4). 

2.1 General context 

The satellite-imagery-based inspection module uses satellite imagery of different modalities to enable 
large-scale, non-invasive continuous inspection of the physical infrastructure. The main innovation of 
the satellite-based inspection module is presented by i) the use of satellite imagery to optimize manual 
physical inspections of the CI and ii) the usage of AI to automate the processing of the satellite imagery 
data itself. The automated processing of the satellite imagery is achieved by using computer vision to 
process satellite images to detect different events and monitor changes. We are focusing on remote 
infrastructure inspection by means of different satellite imagery modalities (optical, multispectral) to 
enable different application use-cases. The modalities and sensors were selected based on the initial 
discussions with the pilots and their identified problems that require remote inspection, presented in 
D7.1. 

The identified cross-pilot problems identified in D7.1 can be separated into i) vegetation management 
and ii) infrastructure change monitoring. Vegetation monitoring requires specific solutions which can 
identify the vegetation and quantify its threat to the infrastructure. We provide a solution that can 
detect vegetation and estimate its height from readily available multispectral satellite-imagery data. 
The detected vegetation and its height can be directly used for threat estimation, according to the 
vicinity of the CI. In D7.1 we also identified many problems that relate to the changes around the CI 
(e.g., landslides, clogging, leaks, illegal build-ups). We provide a general solution of infrastructure 
change monitoring which is not task-specific and enables a general detection of visual change around 
CI using satellite imagery data. 

2.2 Architecture: high level design 

As already introduced in Section 2.1, this module consists out of i) infrastructure change detection and 
ii) vegetation monitoring sub-modules. The sub-modules are independent and connected to the main 
satellite-based inspection module, which handles data collection and pre/post-processing, as well as 
interaction with other components (e.g., dashboards and pilot integrations in T7.3 and UAV-based 
inspection in T7.2). Figure 1 shows this architecture visually. 

Pre-processing consists of data collection from various satellite imagery providers and conversion of 
the collected data into format(s) that is applicable. 
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Figure 1: High-level architecture of the satellite-based inspection module and its sub-modules (T7.1). 

In the following sections we describe individual infrastructure change detection (Section 2.3.1) and 
vegetation monitoring (Section 2.3.2) sub-modules in detail. 

2.3 Tool modules description 

2.3.1 Infrastructure change detection 

Regular inspections of critical infrastructure are essential to ensure their integrity and functionality. 
Manual inspections have drawbacks such as being time-consuming, expensive, and infrequent. They 
are usually time-based instead of risk-based, which reduces the effectiveness of such inspections. 
Furthermore, these limitations can lead to delayed detection of significant damage, subsequently 
escalating the risk of severe harm to vital infrastructure systems. As such, there is a need for automatic 
methods to proactively detect potential risks and enhance the overall resilience of critical 
infrastructure.   

Using the power of advanced satellite technology, it becomes possible to monitor infrastructure sites 
from a distance, facilitating more frequent and efficient assessments, which can be performed on-
demand or continuously, depending on the nature of the monitored infrastructure, possible threats, 
and cost effectiveness. This not only helps overcome the limitations of manual inspections but also 
significantly reduces the risk of overlooking critical issues. With machine-learning and image 
processing, by comparing two satellite images taken at different points in time, changes in critical 
infrastructure can be detected (e.g., earth movements, landslides, debris coming from upstream, 
vegetation overgrowth). Due to the dynamic environment in which critical infrastructure is built, the 
main challenge is to detect any kind of undesirable change. 

2.3.1.1 Change detection data 

Datasets for satellite imagery change detection must be large enough so that we are able to train and 
evaluate machine learning models. Ground sample distance should be sufficiently small (e.g., <= 10m) 
so that we are able to detect smaller changes near critical infrastructure. Three open-source datasets 
dedicated to satellite imagery change detection were identified, offering significant potential for 
training, and evaluating machine-learning algorithms suitable for our use case and for comparing the 
developed methods against state-of-the-art.    

The first dataset, DynamicEarthNet [14] (Figure 2), presents a comprehensive and unique resource for 
satellite imagery analysis. It comprises a collection of daily, cloud-free satellite images captured 
between January 2018 and December 2019; the dataset encompasses 75 diverse areas of interest 
spanning the globe. Each area of interest is represented by a sequence of 730 images, resulting in a 
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total of 54,750 satellite images. The images are obtained from the Fusion Monitoring product by Planet 
Labs [53] and include four spectral channels (RGB + NIR) with a pixel resolution of 3 meters. Notably, 
the dataset incorporates pixel-wise semantic labels that define land cover changes. These labels are 
available for the first day of each month and include predefined categories such as impervious 
surfaces, agriculture, forest & other vegetation, wetlands, soil, water, and snow & ice. With its detailed 
annotations and global coverage, DynamicEarthNet serves as a valuable resource for research in 
satellite data analysis, enabling the exploration of both short-term and long-term land cover changes.  

 

Figure 2: Two examples extracted from the DynamcEarthNet dataset [14], each paired with its 
corresponding semantic segmentation mask. 

The second dataset is the xBD dataset [15] (Figure 3), a large-scale dataset for change detection and 
building damage assessment. xBD offers pre- and post-event satellite imagery across a variety of 
disaster events with building polygons, ordinal labels of damage level, and corresponding satellite 
metadata. It includes satellite imagery of earthquake, tsunami, flood, volcano, wildfire and 
tornado/hurricane disaster events across sixteen regions.  Furthermore, the dataset contains bounding 
boxes and labels for environmental factors such as fire, water, and smoke. It contains 850,736 building 
annotations across 45,362 km2 of imagery. 

 

Figure 3: Two examples from xBD dataset [15]. The image on the left shows the initial state (before), 
while the middle image shows the subsequent state (after). The image on the right displays the ground 
truth data for building damage assessment. 
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The final dataset is the LEVIR-CD dataset [16] (Figure 4). It consists of 637 pairs of high-resolution 
Google Earth image patches, each measuring 1024 × 1024 pixels. These images depict temporal 
changes spanning 5 to 14 years, with a specific focus on significant building growth. Covering various 
building types, the dataset's annotations emphasize changes in building status, both growth and 
decline, marked by binary labels (1 for change, 0 for unchanged). The dataset encompasses a total of 
31,333 instances of individual building changes.  

 

Figure 4: Example from the LEVIR-CD dataset [16], illustrating instances of building change detection. 
The image on the left shows the initial state (before), while the middle image shows the subsequent 
state (after). The image on the right displays the ground truth, denoting the spatial information about 
the region changes.  

While the described change detection datasets have played an instrumental role in the progression of 
this field, providing invaluable data that enabled the development of new methodologies and 
approaches, they also have their limitations. One of the most significant limitations is their reliance on 
a predetermined set of categories. This design inherently constrains the range of changes that can be 
detected, potentially overlooking novel or unexpected shifts in the environment.  

Our aim is to develop techniques that can operate not only on known categories but also on previously 
uncharted ones. This can be achieved by developing methods that can detect any kind of terrain or 
infrastructure change. Therefore, the aforementioned datasets will be used only to quantify the 
performance of our approaches. If the existing datasets will be deemed as unsuitable due to their 
limited change annotations, we will create a new dataset that will serve as a foundation for the 
methodology evaluation. Additionally, by receiving data from pilot partners on historical events that 
led to landscape and infrastructure alterations, we can adjust the evaluation to be more relevant for 
specific use cases. 

2.3.1.2 Methods overview 

Satellite image change detection involves two primary methodologies: supervised and unsupervised 
methods. In the supervised paradigm, machine learning algorithms learn from meticulously labelled 
training data, where each image pair is annotated to highlight both changed and unchanged areas. It 
is crucial to emphasize that supervised techniques necessitate the annotation of every pixel in the 
images under study. This labour-intensive approach demands human annotators to categorize each 
pixel based on the perceived change between the satellite images. With these annotations as a 
reference, the algorithm identifies recurring patterns in new image pairs to pinpoint changes. Although 
supervised methods can achieve highly accurate results, they are confined to detecting changes within 
the categories predefined during training. 

On the other hand, unsupervised methods sidestep the need for labour-intensive labelled data. These 
methods analyse statistical deviations between images to flag discrepancies, detecting changes across 
a wide spectrum—regardless of whether they were encountered during training. The flexibility of this 



 

 
 

 
Document name: D7.2 Infrastructure inspection tool and training guide V1  Page:   18 of 78 

Reference: D7.2 Dissemination:  PU Version: 1.0 Status: Final 

 

approach enables it to adapt to novel change types, although this versatility might lead to some 
precision trade-offs, including potential false positives or overlooking subtle changes.  

An important consideration here is the correlation with the unsupervised visual anomaly detection 
approach, which boasts an established protocol and dataset (e.g., MvTec [17]). This diverges from the 
realm of remote sensing, where a concrete unsupervised protocol is notably absent, despite the broad 
utility, particularly within real-world contexts for such methodologies. The primary distinction lies in 
the fact that anomaly detection operates on individual images, whereas change detection leverages 
paired images. Nonetheless, the methodologies from anomaly detection can be suitably extended to 
serve to our specific requirements. 

2.3.1.3 Methods for change detection 

Change detection methods in computer vision are designed to identify changes between two or more 
images. A machine learning model typically accepts two or more images as input and predicts if change 
happened or not for each pixel. Methods for change detection are inspired by image segmentation 
methods. However, whereas image segmentation focuses solely on an individual image, change 
detection also considers the temporal dimension. We evaluated the following methods which take as 
an input two images (bi-temporal setting): 

- ChangerEx [18] focuses on the "exchange" of bi-temporal features, emphasizing mutual 
learning through feature exchange and mixing layers. This approach promotes automatic 
domain adaptation between two temporal domains instead of strictly adhering to a temporal 
sequence for change detection. 

- BiT (Bitemporal image Transformer) [19] condenses intricate image changes into a handful of 
significant visual concepts, termed tokens. These tokens are then processed using the 
Transformer architecture [11]. 

And models that take as an input three images or more: 

- 3-D U-Net [20] builds upon the foundational U-Net model [4], a popular convolutional neural 
network design in computer vision known for its semantic segmentation capabilities. 
Characterized by its U-shaped architecture, the U-Net model features a contrasting path, a 
central bottleneck, and an expansive path. The 3D U-net applies 3D convolution to process 
data over time dimension, enabling the network to handle spatiotemporal information. 

- U-Net with Temporal Attention Encoder (U-TAE) [21] model encodes image sequences 
through a shared spatial convolutional encoder and incorporates a temporal attention 
encoder to generate attention masks which captures essential features. By integrating 
information from all images, the attention-based fusion enables the model to predict changes 
effectively. 

The field of unsupervised methods for remote sensing is an emerging research domain, where the 
following method has been introduced: 

- CDLR (Change Detection based on image Loss Reconstruction) [22] method utilizes image 
reconstruction, operating with only a single-temporal unlabelled image. The model is trained 
to reconstruct the original image from the input image and a generated augmented image. 
During inference, it identifies the changed regions between bi-temporal inputs by noting 
regions with high image reconstruction loss. 
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2.3.2 Vegetation monitoring 

2.3.2.1 Satellite Providers 

In the development of our tool for satellite-based vegetation monitoring, there are several satellite-
imagery providers to choose from. The decision regarding the providers was guided by the following 
considerations: 

- Cost-effectiveness. The satellite provider should offer data without excessive expenditure. 

- Historical archives. Historical satellite imagery is essential for developing a machine-learning 
solution, as these algorithms require a substantial volume of data to train efficiently. 

- Resolution. By offering imagery at a higher spatial resolution, the finer details of vegetation 
structure can be captured and analyzed. 

Considering these goals, we leveraged the capabilities of two state-of-the-art satellite 
providers/constellations: ESA Sentinel-2 and Planet PlanetScope.   

Sentinel-2: Sentinel-2 is a component of the European Space Agency’s (ESA) Copernicus Programme1, 
a project that provides global high-quality satellite imagery. These images support service providers, 
governmental entities, and various organizations. Copernicus primarily focuses on areas such as the 
atmosphere, marine ecosystems, land, climate, emergency management, and security. It consists of 
two satellites and offers high-resolution observations with spatial resolutions ranging from 10 to 60 
meters, and revisit time of 2-3 days in mid-geographic regions. The thirteen satellite spectral bands 
encompass visible, near-infrared (NIR) and shortwave infrared spectrums.  

Planet PlanetScope: PlanetScope is operated by a private company Planet and comprises of a 
constellation of small satellites. The satellite boasts a rapid revisit time to any given location. The 
imagery has resolution of 3-5 meters, allowing for detailed observations of Earth’s surface. Until 2021, 
the imagery was provided in four spectral bands. In 2021, Planet upgraded the original satellites, 
adding four additional spectral bands. 

Owing to the availability of high-resolution Sentinel satellite imagery data, and its unrestricted access, 
a substantial amount of research has been conducted using this information [23][24][25][26][27]. 
Among these studies is a work on Sentinel-based vegetation height prediction [3], providing an 
opportunity for a direct comparison of our proposed methodologies with existing state-of-the-art 
techniques. Consequently, we report results exclusively on Sentinel imagery. 

2.3.2.2 Vegetation Height Data 

To develop a machine-learning solution, we require ground truth data that allows us to match a given 
satellite image to a corresponding vegetation height map. For this purpose, we use Vegetation Height 
Model (VHM)2 by National Forest Inventory [1], which was calculated for entire Switzerland using 
digital aerial images. Due to the similarity of vegetation characteristics between Swiss and target areas, 
the trained machine-learning models are expected to generalize well. VHM data contains a very high 
spatial resolution of 1x1 meters. The measurements were taken during the summer period over six 
years. Besides raw measurements, VHM data includes metadata about the location and the time of 
every measurement.  

2.3.2.3 Data collection 

We developed a meticulous data processing pipeline to match each VHM data point to its 
corresponding satellite imagery that was obtained from the satellite imagery provider's archive. Only 
imagery with less than 5% cloudiness was considered to ensure the reliability of the data. 
Acknowledging the temporal dynamics of vegetation growth, a two-week window was defined 

 
1 All Copernicus Sentinel data is released under Creative Commons CC BY-SA 3.0 IGO licence. 
2 Released under Open Database Licence (ODbL) licence. 
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between the target data point and the available satellite imagery. This served as a guideline to identify 
suitable images. 

The satellite imagery was searched based on the time-window and the closest image was selected 
from available options to ensure the most accurate representation of the vegetation at that point in 
time. If no suitable images were identified, the data point was discarded. This carefully designed 
pipeline ensures that the dataset maintains a high level of precision and relevance.  

Sentinel-2 satellite imagery was further processed with ESA’s toolbox sen2cor [2], which performs 
atmospheric effect correction. By minimizing inconsistencies and distortions that may arise from 
factors like atmospheric haze, moisture, or other factors, the processed images provide a more faithful 
representation of the actual vegetation structure and decrease imagery variability, which can 
contribute towards performance of vegetation height prediction solution.  

The Sentinel-2 imagery consists of satellite channels with varying resolution. The highest available 
resolution is 10 meters, but some channels contain data with 20-meter or 60-meter resolution. Such 
lower-resolution data was resampled to 10 meters using bilinear interpolation. On the other hand, all 
channels of Planet imagery have a resolution of 3-5 meters.  

Each obtained satellite imagery was paired with the corresponding satellite mask. The satellite mask is 
additional satellite data detailing the spatial information about the observed area, such as the 
presence of clouds, water bodies, or snow. These masks are employed to direct the machine learning 
method towards specific areas of interest, meticulously filtering out irrelevant or unwanted regions 
from the final data, enhancing the precision of the developed method. 

Some examples of extracted Sentinel-2 satellite imagery and the matching vegetation height map are 
shown in Figure 5. 

2.3.2.4 Data processing 

The dataset was divided into training, validation, and test splits according to the established procedure. 
Concretely, the test split was defined according to the test area as described in [3]. The rest of the area 
was defined as a training and validation area. The validation samples are drawn randomly from the 
non-test area. The final data split is shown in Figure 6. The training set was used to calculate various 
statistics of the dataset to normalize the data during machine learning method training. 

 

Figure 5: Examples of Sentinel-2 satellite imagery [54] (top) and the corresponding Vegetation Height 
Model data [1] (bottom).  
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Figure 6: Data split of the collected dataset. Blue, green, and red colour denote the training, validation, 
and test split, respectively. 

In addition to utilizing the raw satellite measurements, our approach incorporated a series of data 
transformations, tailored towards various data bands. These transformations define mathematical 
operations on specific data bands with the aim of producing a new data band that provides more 
relevant data towards the desired task. For example, a transformation on near-infrared band and red 
light defines a Normalized Difference Vegetation Index, which highlights the vegetation in a certain 
area. We included several such transformations to provide better data representation for our machine-
learning methods, thereby enhancing the feature space that our models can leverage. 

2.3.2.5 Machine-learning methods 

The task of vegetation height prediction is closely related to the popular computer vision task of 
semantic segmentation. Both tasks involve making pixel-wise predictions, where the main difference 
lies in whether the model prediction is of discrete nature, as is the case in semantic segmentation task, 
or a continuous one, as in the case of vegetation height prediction. Therefore, we repurposed such 
models towards our task.  

One notable characteristic of such models is their division into two main components: the backbone 
and the head. The backbone is primarily responsible for feature extraction. It interprets an input image 
and transforms it into a set of features that can be utilized for various tasks. Given its crucial role, the 
choice of backbone can significantly influence the model’s performance. The head, on the other hand, 
makes use of these features to perform the actual task, such as vegetation height prediction as in our 
case. 

In our experimentation, we explored various architectures, both in terms of their overall structure and 
the specific backbones they employed. Specifically, some of the most prominent architectures and 
backbones we tested are: 

- UNet [4] is a fully convolutional network that was originally purposed for the task of biomedical 
image segmentation. Its architecture is characterized by a symmetrical contracting path that 
captures context and a symmetric expanding path that enables precise image predictions. We 
employ EfficientNet [13] as the backbone model. 
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- DeepLabv3 [7] is an enhanced fully connected network that employs atrous convolution [55] with 
various dilation rates, which allows it to capture multi-scale information.  

- Swin Transformer [6] applies shifted windows to partition images into non-overlapping local 
regions, which are processed with Transformer architecture [11]. Swin Transformer is used as a 
backbone and UPerNet [10] is used as the head model, as proposed in the original paper.  

- ConvNeXt [5] is a modernized convolutional architecture that introduced several key model 
components, which achieved superb classification, semantic segmentation, and object detection 
performance. ConvNeXt is used as a backbone model and UPerNet [10] is used as the head model, 
as proposed in the original paper. 

We chose the Mean Absolute Error (MAE) as our principal training loss and evaluation benchmark. 
When compared to the frequently adopted Mean Squared Error (MSE) criterion, MAE presents distinct 
advantages. Specifically, within the VHM dataset, which contains occasional outliers due to 
measurement inaccuracies, MAE proves to be less susceptible. Additionally, while MSE can often lead 
to smoother or blurrier predictions, MAE reduces the likelihood of such over-generalizations, yielding 
a more faithful portrayal of vegetation height variations.  

2.4 Tool modules lab validation 

In this section we evaluate the developed approaches against state-of-the-art solutions in the 
literature. This has enabled us to select appropriate approaches, as well as to test our newly developed 
solutions in a reproducible and comparable fashion. Note that real-world pilot data for the evaluation 
purposes will be scarce (e.g., events of interest are rare), making it hard to comprehensively evaluate 
the performance of the developed approaches at SUNRISE pilot sites. 

2.4.1 Infrastructure change detection 

Ιn this segment, we begin by introducing the evaluation metrics utilized in the domain of change 
detection. We then proceed to evaluate the identified methodologies and assess their suitability within 
the context of our unique use case. 

2.4.1.1 Evaluation metrics 

In the context of change detection, precision, recall, and the F1 score [57] play a crucial role in 
evaluating the effectiveness of the machine-learning model. Precision assesses the accuracy of 
detected changes, indicating how many of the reported changes are indeed valid. Recall measures the 
ability to detect all actual changes, ensuring that important changes aren't missed. The F1 score 
provides an overall assessment of the model's ability, as a balance between precision and recall, to 
identify changes accurately and comprehensively in the given data. 

Another commonly used metric is Intersection over Union (IoU) [56], which assesses how accurately 
predicted changed areas align with actual changes. It quantifies the overlap by calculating the ratio of 
the intersection to the union of the regions, comparing ground truth and predicted change. This 
evaluation method measures the effectiveness of change detection algorithms, with IoU values 
ranging from 0 to 1 where score of 1 signifies a flawless prediction. When dealing with multiple 
categories, a commonly adopted approach is to utilize the mean Intersection over Union (mIoU) metric. 
This metric computes the average of the IoU values for each category, providing a consolidated 
assessment of change detection accuracy across various classes. 

When pixels are also annotated with a class label, the Semantic Change Segmentation (SCS) metric can 
be used. It comprises two key aspects in evaluating change detection results: binary change (BC) and 
semantic change (SC). BC quantifies the alignment of predicted change with actual change, utilizing 
the IoU to measure overlap. SC assesses semantic accuracy among changed pixels, calculating the 
Jaccard index for predicted labels compared to ground-truth labels within the set of changed pixels. 
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The SCS score is a mean of BC and SC and offers a comprehensive measure of the quality of semantic 
change segmentation. 

It is important to highlight that in this deliverable, our focus revolves around the comparison of state-
of-the-art change detection methods. Nevertheless, our future work will predominantly focus on event 
detection that has already occurred. During this phase, we intend to adopt more user-centric 
evaluation protocols, which may be less rigorous, to evaluate practicality of the system from an end-
user perspective. 

2.4.1.2 Experiments 

Method evaluated that work with bi-temporal setting were evaluated on LAVIR-CD dataset. Results 
can be seen in Table 1. 

Table 1: Quantitative results of change detection on LEVIR-CD dataset [16]. 

Method IoU (%) Precision (%) Recall (%) F1 (%) 

BiT 80.86 89.24 89.37 89.31 

ChangerEx 85.76 92.97 90.61 91.77 

CDLR 59.0 63.0 92.0 74.78 

 

Due to the LAVIR-CD dataset's exclusive focus on building changes, the CDLR method achieves lower 
F1 and IoU scores. However, CLDR also identifies additional changes not labeled in the dataset, 
underscoring its broader applicability. A visual example of CDLR method performance in shown in 
Figure 7. This aspect is evident in its higher recall compared to other supervised methods, showcasing 
the promise of unsupervised approaches in change detection. In the realm of supervised methods, 
ChangerEx outperforms BiT and currently holds the position of the state-of-the-art (SOTA) for change 
detection. 

 

Figure 7: Example from the LEVIR-CD dataset [16], illustrating detected changes using the CDLR method 
[22]. The image on the left shows the initial area state, while the middle image shows the later state 
with newly constructed buildings present in the image. The image on the right displays the predicted 
changes with CDLR method. 

We evaluated 3D-Unet and U-TAE on DynamicEarthNet dataset which provides a model as an input 
multiple images so that the model has an additional context with images on daily or weekly basis. The 
results can be seen in Table 2.  Examples of predictions can be seen in Figure 8. 
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Table 2: Quantitative results of semantic change segmentation on DynamicEarthNet dataset [14]. 

Method SCS (%) BC (%) SC (%) MIoU (%) 

U-TAE (weekly) 19.1 9.5 28.7 39.7 

3D-Unet (weekly) 17.6 10.2 25.0 37.2 

U-TAE (daily) 15.6 7.0 24.2 30.9 

3D-Unet (daily) 18.8 11.5 26.1 38.8 

 

The impact of adding extra context can influence the model's performance, either enhancing or 
diminishing it. Given the strong correlation in daily observations, optimal outcomes are attained 
through weekly sampling. Moreover, methods employing weekly sampling necessitate fewer 
computational resources. 

 

Figure 8: Examples from the DynamicEarthNet dataset [14], each accompanied by its corresponding 
ground truth semantic segmentation mask and our predicted mask, using the 3D-UNet [20] approach. 

In conclusion, our research trajectory will emphasize unsupervised approaches, primarily driven by the 
fact that our domain involves distinct and undefined anomalies/changes. Given the intricate nature of 
these anomalies, characterizing them in a supervised manner becomes a challenging endeavour. As a 
result, our focus on unsupervised methodologies aligns with the inherent complexity of our target 
changes, allowing us to effectively navigate their detection without predefined labels. 

2.4.2 Vegetation monitoring 

In the following section we present the implementation details and results of the proposed vegetation 
monitoring solution. 

2.4.2.1 Implementation details 

During training, the input data is normalized according to precomputed statistics, in terms of mean 
and standard deviation, which ensures consistent scale across features, aiding in faster convergence 
and training stability. We found additional improvement in training stability by normalizing the 
vegetation height to the range of [-1, 1], and applying hyperbolic tangent nonlinearity to the top of 
each model.  
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All models are trained using AdamW optimizer [12] with a learning rate of 0.001 and a weight decay 
factor of 0.01. Learning rate was decreased by a factor of 10 when the validation loss did not improve 
for the last 10 epochs. The batch size is set to 32 for all models. We employ data augmentation 
strategies during training such as horizontal flipping, vertical flipping, and random rotation. No data 
augmentation is applied during model testing. 

We train and evaluate the models using only the valid ground truth measurements. Each data point 
corresponds to an individual vegetation height measurement tied to a specific location and time of 
measurement.  A data point is deemed invalid under the following conditions: 

- The target location lacks a data point, 

- The data point lies outside the specified area polygon, which is associated with specific 
measurement time, 

- Data points that overlap with snow or water regions are excluded, as these areas lack vegetation 
and wouldn't challenge the model. 

Another important consideration is treatment of invalid satellite imagery pixels, which occurs due to 
area polygon cropping of imagery. These pixel values are replaced with the mean of the respective 
channel.  

2.4.2.2 Results and discussion 

Quantitative results. 

In our assessment, we employed a single-input single-output evaluation. We refrained from utilizing 
multiple satellite images to generate a series of outputs that would then be averaged for the final 
result. This approach was chosen to ensure that each prediction can be directly attributed to a specific 
input, thereby maintaining clarity in our evaluation, and allowing for a straightforward comparison 
between the predicted and actual outcomes. 

We employ the Mean Absolute Error (MAE) metric, which effectively quantifies the average magnitude 
of errors between predicted and actual vegetation heights. Table 3 shows the results for all tested 
models on the test split of VHM data. It is evident that UNet architecture outperforms the newer 
models such as ConvNeXt and Swin. This highlights the fact that cutting-edge models, even though 
highly sophisticated, are not always guaranteed to provide superior results in all application areas.  

Our results are superior to the results reported in [3], which achieved MAE of 2.0 meters on the same 
target area using the single-input single-output evaluation methodology. Our solution uses more data 
to train the model, which can contribute towards better performance. 

Table 3: MAE results (in meters) for every tested model 

Model DeepLabv3 Swin ConvNeXt UNet 

MAE [meters] 2.4 2.1 1.9 1.7 

 

Qualitative results. 

Figure 9 displays prediction examples from the best-performing model, UNet. The figure provides a tri-
fold visualization: the visible spectrum of the original satellite input image on the left, the ground truth 
vegetation height in the center and the UNet model prediction on the right. We can observe that UNet 
accurately captures the vegetation height in scenes involving agricultural areas (first row) as well as 
scenes of urban environment (third row). Note that the satellite imagery also shows only the three 
visible channels (red, green, and blue). The complete input fed into the model comprises of 12 channels 
containing raw data, and additional channels calculated on-the-fly using various transformations that 
aim to provide better data representation. 
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Figure 9: Qualitative results of UNet [4], the best performing model. From left to right the column show 
the visible spectre of the Sentinel-2 [54] image, the ground truth vegetation height, and the prediction 
of our model. The resemblance between the ground truth and the model prediction showcases the 
model’s accuracy in capturing vegetation height nuances.  

2.4.2.3 Future work 

Our future work will focus on the research of self-supervised techniques and advanced data 
augmentation techniques to further improve the performance of machine-learning models. 
Furthermore, by receiving information about historic vegetation management events from pilot 
partners, our evaluation procedure will be more targeted towards specific pilot use cases. 
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2.5 Deployment 

The developed solutions will be made available as-a-service to facilitate easy integrations into user 
interfaces developed in T7.3 (Section 4) or existing systems available at pilot locations. This scalable 
and modular design pattern also facilitates re-usability in other AI-based inspection modules (e.g., 
UAV-based inspection in T7.2 – Section 3). Due to the specific nature of developed solutions, we plan 
to deploy only inference part of the pipeline. The developed solutions will not have a particular need 
to be retrained frequently or at all, thus simplifying the deployment pattern and usage of the 
developed solutions. 

The deployment will be facilitated in the following steps: 

• Code packaging: The inference part of the developed solutions code be packaged using 
standard Python packaging tools3, enabling low-level integration with other solutions (e.g., 
T7.2). 

• Containerisation: All the developed solutions will be packaged as microservices into 
containers according to OCI Image Specification4. This will enable ease-of-use for other 
developers, as well as enable deploying the developed solutions in a modular and scalable 
fashion using container orchestrators (e.g., Kubernetes5). 

• AI Model management: AI model lifecycle will be managed using MLFlow6. This will facilitate 
tracking the performance of the model during an offline training phase, as well versioning of 
the deployed AI model. 

• REST API: The solutions will be available as-a-service via REST API with OpenAPI7 
documentation and OAuth 2.08 authorization, which will be implemented using FastAPI9. This 
will facilitate high-level integrations with tools developed in T7.3, as well as existing tools 
available at pilot sites. 

The developed solutions will be deployed using cloud-native principles to one of the public cloud 
providers (e.g., Microsoft Azure Cloud), thus enabling highly reliable and scalable deployment. This 
approach will be highly beneficial to individual pilots. Deploying to cloud will remove the need for 
expensive specialized HW and maintenance efforts, related to traditional on-premises deployments. It 
will also enable precise cost management and effortless scaling, thus making it easier to reach wider 
adoption of the developed solutions. 

 

 

 

 

 

 
3 https://packaging.python.org/en/latest/ 
4 https://opencontainers.org/ 
5 https://kubernetes.io/ 
6 https://mlflow.org/ 
7 https://www.openapis.org/ 
8 https://oauth.net/2/ 
9 https://fastapi.tiangolo.com/ 
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3 UAV inspection tool 

This third section of the document introduces the content related to the tools that comprise the critical 
infrastructure inspection sub-module using images captured by UAVs. The proposed solutions arise 
from the efforts within the scope of task T7.2. 

The section is structured in a way that gradually introduces content from the general to the specific. It 
begins with an overview and context of the task at hand, followed by a description of the high-level 
architecture of the tool. It then delves into a detailed account of the implemented software methods 
and algorithms, their proof of concept and deployment, and concludes with the hardware composition 
and integration of the UAV platform. 

3.1 General context 

The UAV image-based visual inspection module leverages the tremendous technological advances in 
the field of image analysis to perform targeted, non-invasive examinations of critical infrastructure 
(CI), its structures and specific elements.  

Key innovations in this module include the use of UAV imagery to modernize current visual inspections 
and the application of AI to automate data analysis. Using state-of-the-art deep learning and computer 
vision methods, this approach addresses a multitude of problems identified by stakeholders. 

Specific visual sensors are used depending on the inspection requirements. 

The overall goal is to automate CI preventive maintenance tasks, speed up failure response and create 
versatile applications for widespread use in different CI scenarios. 

These solutions complement satellite inspections, described in the previous chapter 2, with the 
capacity to analyze much larger areas, providing greater precision and level of detail in specific areas 
considered high risk or of great importance. 

As described in detail in deliverable D7.1, the areas for which this module intends to offer solutions 
are the inspection of catenary networks and power lines, the detection of generic anomalies (floods, 
landslides, fire, ...), the inspection of structural or specific components (cracks, corrosion, leaks in 
pipes, ...), and the 3D virtualization of infrastructures. 

3.2 Architecture: high level design 

As previously stipulated, this critical infrastructure inspection tool module, which analyzes images 
captured by UAVs, forms an integral part of the comprehensive inspection module. Thus, its design 
must be self-contained, modular, and scalable to facilitate seamless integration into the complete 
solution. A brief definition of these three main design principles, in the context of our specific solution, 
is included in the following bullet points. 

 Self-Contained Design: The tool is designed to be self-contained, meaning that it can function 
independently without relying on other components of the system. This ensures that any changes 
or updates to other parts of the system do not impact the functionality of the inspection tool. 

 Modular Design: Modularity is a key aspect of the design, allowing the inspection tool to be easily 
incorporated into the broader system. This approach enhances the flexibility of the system, 
enabling the addition, removal, or modification of specific components without disturbing the 
overall function of the system. This feature is relevant to allow the introduction of new modules 
during the next phases of the project. 

 Scalable Design: Scalability is crucial to accommodate potential growth and changes in system 
requirements. The scalable design of the inspection tool ensures that it can handle an increasing 
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volume of data or computational requirements, thus future-proofing the system against evolving 
needs. 

To enable this, the developed software application must incorporate an interface that handles 
communication with the other components of the project, facilitating the exchange of requests and 
responses. The solution implemented at this initial stage of the project is the deployment of services 
via a REST API. This RESTful interface ensures standardized communication across different parts of 
the project, promoting interoperability and enhancing overall system cohesion.  

In line with the previously defined design principles of self-containment, modularity, and scalability, 
the generated code has been dockerized. Dockerization encapsulates the software application within 
a lightweight, stand-alone, and executable package that includes everything needed to run the 
application: the code, a runtime environment, libraries, environment variables, and config files. This 
approach ensures that the application runs uniformly and consistently on any infrastructure. 
Dockerization, therefore, significantly simplifies the deployment process, allowing for rapid, 
straightforward access and execution of the software. This encapsulated package can be effortlessly 
deployed, scaled, and redeployed across diverse environments, further enhancing the flexibility and 
robustness of the software tool.  

Figure 10 shows schematically the elements that compose this architecture, and the way in which they 
relate to each other. The graphical user interface referred to in the illustration is the one implemented 
in task T7.3, which is introduced in section 4. 

 

Figure 10: UAV visual inspection tool general architecture. 

As reflected in Figure 10, in terms of the code's structure, a main Python script has been implemented 
to serve as the backbone of the entire process. This script is responsible for coordinating the loading 
and initiation of the various modules. It also proficiently manages the reception and processing of data 
in a range of formats, such as directories, videos, individual images, and streaming. 

Furthermore, this main script plays a vital role in the integration logic of the modules. Specifically, it 
ensures that the output from one module can seamlessly become the input for another, creating a 
harmonious flow of data and operations. Alternatively, if needed, it also has the capability to run the 
modules autonomously, allowing for flexibility based on specific requirements. 

Each of the incorporated modules is designed with a sense of independence. They remain inactive 
unless they are specifically called upon in the launched application. Adhering to best practices of 
Object-Oriented Programming, only the necessary module instance is loaded when required. Principles 
such as the Singleton Pattern [28] have been judiciously employed, guaranteeing that each module is 
instantiated just once at the beginning to optimize resource utilization. 
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The implementation of this code structure is designed to try to ensure a system that embodies 
versatility and efficiency, with the intent of ensuring compatibility across a broad spectrum of 
hardware devices. 

3.3 Tool modules description 

Currently, there is a significant upswing in AI models, particularly in the domains of text comprehension 
and generation, termed Large Language Models (LLM), as well as the understanding of visual-textual 
concepts, known as Visual Language Models (VLM). Prominent examples of LLM include Facebook's 
Llamav2 [29] and OpenAI's GPT-4 [30]. In the VLM category, OpenAI's CLIP [31] and its variations are 
particularly noteworthy. The rapid technological advancements in these models are undeniable, with 
leading AI entities such as Microsoft, Facebook, Google, StabilityAI, or OpenAI consistently introducing 
groundbreaking developments. 

In light of this landscape, it is deemed that the most prudent strategy for implement the inspection 
module is to leverage, adapt, and build upon these pivotal open-source models. Integrating them as 
foundational elements in more comprehensive frameworks, the aim is to deliver high-quality and 
valuable solutions tailored for specific infrastructure inspection tasks. 

At this juncture of the project, three foundational code modules have been effectively established, 
setting the groundwork for a progressive expansion of their functionalities in future phases. Their 
design prioritizes adaptability, ensuring they serve as a robust base for specialized applications planned 
over the next two years. These modules are: 

 Object Detection and Semantic Segmentation: This module specializes in detecting and segmenting 
specific elements within images. It supports both state-of-the-art zero-shot models as well as 
models meticulously trained for predefined concepts. Furthermore, it offers the ability to perform 
semantic segmentation of scenes, enhancing their understanding. 

 Visual Question Answering: An innovative module that interacts with visual content, it furnishes 
nuanced answers about the image, thereby deepening the comprehension of the embedded visual 
information. 

 3D Virtualization: This module capitalizes on image segmentation and leverages the advanced 
capabilities of the Neural Radiance Field (NERF) algorithm [32]. Through the application of NERF, the 
module facilitates the transformation of 2D videos into photorealistic 3D scenes, enabling in-depth 
inspection of these virtualized models. 

For the forthcoming phases, there is a proactive plan to incorporate additional modules and augment 
existing features. On the horizon is the Synthetic Image Generation tool, which will leverage advanced 
models such as Stable Diffusion XL [33]. This addition will facilitate the creation of simulated scenarios, 
enabling the validation of potential solutions without a sole dependence on real-world imagery during 
the piloting stages of the project. 

Furthermore, discussions are underway about introducing a UAV footage Change and Anomaly 
Detection module. This module would specialize in identifying variances in images captured from the 
same location but at different temporal intervals. Such capabilities would be invaluable in monitoring 
environments, infrastructure changes, or any other application requiring temporal image comparisons. 
As the project evolves, the integration of further modules remains an open prospect, always tailored 
to meet the evolving requirements of the CI stakeholders. 

3.3.1 Object Detection and Semantic Segmentation 

The detection and segmentation module is unequivocally the most pivotal and extensive of all modules 
implemented, both in its current state and as projected for the future. Within the framework of 
computer vision solutions, tasks related to object detection and semantic image segmentation have 
historically been the foundational pillars upon which high-value tools are constructed. This holds true 
for this visual inspection module. 
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Given the context and aims outlined in the initial two paragraphs of section 3.3, referencing the rise of 
LLM and VLM models, the semantic detection and segmentation tool integrates various state-of-the-
art models. It appends the necessary functionalities and implement distinct solutions jointly. 

This module deploys two distinct yet complementary approaches. On the one hand, the developed 
software aims for a broad application spectrum. That is, to seek to detect and segment visual concepts 
of diverse natures without the need for retraining the models for each specific element, thereby 
encompassing a wider range of potential use cases. Objects that fit seamlessly into this category 
include pipelines, electrical isolators, sewers, grates, and other common objects with well-defined 
shapes and characteristics. 

Conversely, in contrast to this need for broad-spectrum models, there exists a demand for the 
development of ad-hoc models for the detection or segmentation of concepts that necessitate 
specialized handling due to their intricate visual features or owing to their critical nature that demands 
high performance. Prime examples in this category are fire and smoke. Detecting them poses inherent 
challenges. Generic models typically offer mediocre performance due to the undefined shape and 
dynamic evolution of these elements. Moreover, real-time detection with superior performance is 
paramount to derive actionable insights from the model's output, and in many cases generalist models 
are larger and require more time to infer a response. 

Having delineated this dual approach with clear objectives, and following a thorough review of the 
current state-of-the-art in these subjects, the integration of up to five distinct models has been 
achieved to meet the aforementioned needs. The models currently adapted in this module are: Detic, 
GroundingDINO, X-Decoder, SAM, and YOLOv8. Subsequent paragraphs provide a concise introduction 
to each of them. It should be noted that while these models build upon previous developments, a 
decision has been made to abstain from delving into those foundational models in depth, in order to 
maintain the brevity of the document and ensure readability and comprehensibility. 

The first integrated model is Detic. Detic [34] was an innovative model upon its release in 2022. It 
introduced an innovative detection and object segmentation solution that leveraged the capabilities 
of CLIP (Contrastive Language–Image Pre-training) [31] to merge text and image understanding. This 
method allows Detic to adapt to detection tasks using datasets primarily designed for classification, 
tapping into their extensive labeled resources. Remarkably, with the integration of CLIP, Detic can 
recognize objects without any prior exposure during its training, showcasing its zero-shot detection 
capabilities, and can detect any concept/object given input as plain text (open-vocabulary). Facebook 
is the main entity associated with the development of this model. 

Similarly, GroundingDINO [35] is also an open-set object detector. This means it can be instructed on 
which concepts to locate in an image through a textual input, and it does not require the item to be 
within a predefined class list for the detector to function correctly. This model merges a detector based 
on the Transformer architecture, DINO, with grounded pre-training. While it shares some similarities 
with Detic's approach, it employs distinct methodologies. Moreover, it is worth noting that 
GroundingDINO is from a more recent publication, dated March 2023, and it is associated to Microsoft 
researchers.  

Both models demonstrate impressive performance on the COCO open-vocabulary benchmark [36], a 
common metric highlighted in both papers. GroundingDINO slightly outperforms Detic in zero-shot AP, 
scoring 46.7 mAP compared to Detic's 45.0 mAP. However, it is essential to understand that these 
metrics are only roughly comparable. Differences in the methodologies and approaches of the two 
models can influence the outcomes, underscoring the value of implementing and testing both 
solutions. 

Also developed by researchers at Microsoft in collaboration with other institutions, X-Decoder [37] is 
a sophisticated model designed to identify which object/cluster in an image each pixel belongs to and 
determine its corresponding language token. Built on an encoder-decoder framework, this model 
employs an image encoder to capture visual features and a text encoder to process language-based 



 

 
 

 
Document name: D7.2 Infrastructure inspection tool and training guide V1  Page:   32 of 78 

Reference: D7.2 Dissemination:  PU Version: 1.0 Status: Final 

 

queries. The decoder then uses this information to predict specific image segments and their related 
language semantics. X-Decoder seamlessly integrates a range of image segmentation and vision-
language tasks, achieving top-tier results in open-vocabulary segmentation. This includes tasks like 
scene semantic segmentation (e.g., distinguishing houses, trees, clouds, sky, and ground in an image) 
and referring segmentation tasks (e.g., identifying the closest house in an image). This work was 
published in December 2022. In illustrating the capabilities of this model, Figure 11 shows the 
performance of the open-vocabulary X-Decoder in various scenarios relevant to the project context. 

 

Figure 11: Landslide and flood detection/semantic-segmentation using X-Decoder on aerial imagery. 
Source: [58] (left); [59] (centre); [60] (right). 

The third model introduced is Segment Anything Model (SAM) [38]. As highlighted in the publication 
paper of SAM, X-Decoder played a partial role in inspiring this new design, which was released in April 
2023 by researchers from Microsoft. Similar to its predecessor, SAM is a highly versatile image 
segmentation model that leverages cues such as text or specific image positions to effectively segment 
concepts across a broad range of segmentation tasks. In the months following the original SAM model's 
release, the community has introduced enhancements to the base model, leading to the development 
of SAM-HQ [39], which outperforms SAM across the nine datasets evaluated in the study. For 
reference, and while acknowledging that methodologies in each study can influence outcomes, one 
can compare the metrics of the three models on the COCO dataset [36]. X-Decoder reports the lowest 
mAP at 40.5, followed by SAM at 48.5, and SAM-HQ leading with 49.5. Despite this comparison, it's 
important to note that, based on our experimental implementations and tests, SAM-HQ distinctly 
excels in segmenting specific objects and elements. However, X-Decoder demonstrates superior scene 
comprehension, which could be invaluable for future inspection applications. 

Table 4 provides a summary comparison of the models introduced thus far, based on the results 
presented by their respective authors. Section 3.4.1 will introduce application examples of the 
implemented models to offer a qualitative assessment of the outcomes. 
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Table 4: Comparison of mAP metrics for models in COCO dataset across Detection and Semantic 
Segmentation tasks. For detection, mAP evaluates bounding box accuracy; for segmentation, it gauges 
the precision of segmentation masks. 

Models Detection Semantic Segmentation 

DETIC 45.0 - 

GroundingDINO 46.7 - 

X-Decoder - 40.5 

SAM - 48.5 

SAM-HQ - 49.6 

 

It is essential to emphasize that the four models introduced thus far are of universal applicability, 
endowed with open-vocabulary zero-shot detection and segmentation capabilities, without the need 
for retraining or select the objects to be detected from a closed list of classes. Furthermore, they 
operate under an open-vocabulary approach, without being restricted to predefined lists of 
identifiable objects. These attributes make them highly versatile tools, suitable for integration into 
more complex workflows as the project progresses. 

Finally, having introduced the models responsible for delivering the previously mentioned broad-
spectrum solutions, it remains to specify the foundation for specialized, ad-hoc solutions. For such 
applications, YOLOv8 stands out as the prevailing state-of-the-art model, making it the chosen 
implementation. While there is not an official paper detailing YOLOv8 as of this document's date, 
comprehensive insights into its features and architecture can be found on [40], the GitHub repository 
of its developer, Ultralytics. Drawing from the legacy of the "You Only Look Once” family  [41], YOLOv8 
incorporates enhancements and novel features to this series of real-time object detection systems, 
that employs a singular convolutional neural network (CNN) to process the entire image, predicting 
object locations and classifications. This method differs from other detectors, instead of proposing 
regions and subsequently classifying them (two-steps detectors), YOLO segments the image into grids, 
predicting bounding boxes and class probabilities for each grid cell in one go. This streamlined 
approach grants YOLO its remarkable speed and efficiency, setting it apart from other detection 
methods and making it perfect for this ad-hoc model detection and segmentation solutions. 

More examples of the performance of these models in specific use cases of the project are given in 
section 3.4.1, where some PoCs are introduced. 

3.3.2 VQA  

The Visual Question Answering (VQA) module, like the previous module, aims to extract the maximum 
amount of information from images by leveraging the latest advancements in LLM and VLM. VQA 
stands at the cutting-edge intersection of computer vision and natural language processing. Within a 
VQA system, an image is processed in tandem with a text-based query pertaining to its content. This 
system harnesses the power of convolutional neural networks for image analysis and either recurrent 
neural networks or Transformers for textual understanding, producing a contextually appropriate 
response to the given question. This approach offers not only precise identification of visual 
components in the image but also a profound semantic comprehension to link the visual content with 
the linguistic inquiry.  

To implement this module, the chosen tool is BLIP-2. BLIP-2 [42] is an innovative pre-training strategy 
that bridges the gap between vision and language by integrating pre-trained image encoders with large 
language models. Integral to BLIP-2 is the Q-Former, a component specifically designed for modulation. 
While BLIP-2 integrates two robust pre-trained models (visual and linguistic), the Q-Former refines 
their interaction, ensuring optimal synchronization. A salient feature of BLIP-2 is its adaptability; as 
advancements in model architectures emerge, BLIP-2 can be updated to incorporate these 
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enhancements, maintaining its position at the technological vanguard, by only fine-tuning the Q-
Former instead of several huge networks. Empirical evaluations have underscored BLIP-2's superiority 
over other leading models, such as Flamingo[43]. In benchmark tests, specifically in zero-shot VQAv2 
tasks [44], BLIP-2 surpassed the Flamingo80B model by a margin of 8.7%. 

For a more tangible understanding, Figure 12 provides a visual representation of the model's capability 
to interpret scenes and address specific queries about them. This visualization underscores the efficacy 
and potential of the chosen approach. Further exemplifications and use-case evaluations are detailed 
in section 3.4.2. 

 

Figure 12: VQA example of BLIP2 image interrogation. Above: original image taken in HDE’s 
installations. Down: examples of queries and answers provided by the model. 

3.3.3 3D Virtualization 

The third module introduced is a 3D reconstruction and virtualization module, to obtain 3D point 
clouds of the infrastructure with inspection purposes. The foundation of this module lies in the 
innovative technology of Neural Radiance Fields (NeRF) [32]. This technique is at the leading-edge 
computer vision advancements, harnessing the power of deep neural networks to transform two-
dimensional images into intricate three-dimensional scenes. NVIDIA, a vanguard in the tech sphere, 
has further refined this approach with their iteration termed Instant-NeRF [45]. This enhancement not 
only expedites the NeRF procedure but also optimizes the creation of neural radiance fields, ensuring 
a more cohesive and agile process. 

An added key component of NVIDIA's approach is the use of the COLMAP tool [46], a robust utility that 
enables dense scene reconstruction from a collection of images. While this tool greatly bolsters the 
reconstruction phase, there are instances where the output may exhibit noise or other imperfections. 
To counteract these anomalies, the sophisticated segmentation models previously detailed can be 
invoked. Utilizing these models allows for the precise elimination of any scene noise, culminating in 
the production of immaculate and precise three-dimensional depictions of the targeted objects. 

In summary, the synergy of NeRF technology, NVIDIA's Instant-NeRF enhancements, the capabilities 
of COLMAP, and the accuracy of state-of-the-art segmentation models collectively set a gold standard 
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for the fidelity and precision of 3D scene reconstructions, and thus are the processes implemented in 
the proposed virtualization pipeline.  

The steps followed and an example of the results obtained by proceeding in this way can be visualized 
in Figure 13. A PoC with real data taken with UAV in the context of this Pilot 0 is attached in section 
3.4.3. 

 

Figure 13: 3D virtualization of an aqueduct from a UAV footage video. Step 1: collect raw images of an 
infrastructure; Step 2: use COLMAP to generate camera path; Step 3: extract background with SAM-
HQ; Step 4-5: NeRF training and 3D model visualization. Source: [61]. 

3.4 Tool modules lab validation 

As highlighted in preceding sections, validation of the proposed UAV platform and pipelines within 
real-world scenarios of critical infrastructure is earmarked for Pilots 1 and 2, set for execution in 2024 
and 2025. In the context of Pilot 0, validation is confined to a comparative analysis of metrics from the 
conducted state-of-the-art study, own metrics in the case of YOLOV8, and a few PoCs that have been 
undertaken using data provided directly by CI entities or from open online sources.  

The ultimate objective of this validation is to demonstrate that the implemented models (section 3.3) 
can serve as a valuable component or even as the entirety of an image analysis process for inspecting 
the elements of interest. 

3.4.1 Object Detection and Semantic Segmentation  

Regarding the detection and segmentation module, a substantial number of tests have been 
conducted to qualitatively verify that the implemented models perform well in scenarios and situations 
encompassed within the project. 
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Firstly, Figure 14 includes several examples of object detection using the GroundingDINO open-
vocabulary model. This model provides the bounding box of the object specified as textual input, with 
the words "grate, manhole, insulator" being used in this instance. 

 

Figure 14. GroundingDINO detections with open-vocabulary: grate, manhole, isolator. Source: [62] 
(down-left); CI stakeholders (others). 

Secondly, Figure 15 displays the segmentation of images of pipes that could be part of ACO's 
installations. This test showcases the outcome of using the word "pipe" as input to the X-Decoder 
open-vocabulary model. 

 

Figure 15: Pipes semantic segmentation results with X-Decoder open-vocabulary: pipe. Source: [63] 
(left); [64] (centre); [64](right). 
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The images derived from this segmentation model can serve as input for a subsequent model focused 
on detecting leaks or corrosion in the pipes. The extraction of background noise simplifies the 
challenge and aids the tasks of subsequent models applied to the output image. 

A second test, based on the same concept of employing semantic segmentation to eliminate image 
noise, can be observed in Figure 16. On this occasion, the segmentation results from utilizing 
GroundingDINO to identify each object, followed by SAM-HQ to segment each pixel. In addition to the 
original images, the textual input to the model is "pylon, insulator". 

 

Figure 16: Background extraction with GroundedSAM (GroundingDINO + SAM) open-vocabulary: 
pylon, insulator. Above: original images; Down: SAM segmentation results. Source: CI stakeholders 
(left); [66] (left-centre); [67] (right-centre); [68] (right). 

Lastly, regarding the ad-hoc models trained for specific tasks, YOLOv8 has been trained for fire and 
smoke detection using a dataset of images generated through Stable-Diffusion v2.1. This dataset 
originates from another European project, Sylvanus. Figure 17 displays mAP metrics achieved during 
the training of this model, reaching 0.64 in mAP. 

 

Figure 17: YOLOv8 fire and smoke detector mAP metrics. 

Figure 18 showcases some results obtained by inferring with the model on images produced using 
generative image models, with the intent of testing the model in a context akin to real-world 
application. As can be observed, the actual challenge to address in this instance is the detection from 
UAVs of potential fires caused by sparks emitted from trains during braking. 
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Figure 18: Fire and smoke detection with Yolov8 model over Microsoft Bing AI generated images. 

3.4.2 VQA 

The PoC conducted with the BLIP-2 model aims to ascertain whether such models can offer pertinent 
information for decision-making regarding the condition of specific elements within facilities or 
structures. This approach could potentially obviate the need for training distinct classifiers for each 
element to be inspected, thereby encompassing a broader range of use cases. 

The subsequent illustrations depict clear examples of how this model can assist in identifying damages 
or issues in elements and scenarios pertinent to this project. Figure 19 demonstrates its application in 
assessing the integrity of three pipes with varying degrees of deterioration, providing valuable insights 
both in the textual output and in the similarity percentage values between the queries and the input 
images. 
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Figure 19: BLIP-2 pipe status image interrogation. Source: [63] (up); [64] (centre); [65] (down). 

 

Figure 20 presents positive outcomes in the endeavor to replace image classifiers with these types of 
textual verifications, accurately determining the maintenance status of the ceramic insulators in power 
lines. 

 

Figure 20: BLIP-2 insulators status image interrogation. Source: [66] (up); [67] (centre); [68] (down). 

In the last of the three illustrations, Figure 21, it can be observed how a straightforward pipeline 
combining detection, segmentation, and the VQA model can address challenges such as automatically 
verifying the blockage or occlusion of grates in remote locations. 
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Figure 21: BLIP-2 grate clogging status image interrogation. 

3.4.3 3D Virtualization 

The PoC conducted to validate the 3D model generation pipeline, integrating NeRF, COLMAP, and 
SAM-HQ, incorporated the recording of a Point Of Interest (POI) video using a recreational UAV. POI 
flights involve executing a circular route around an object or structure intended for 3D reconstruction. 
Figure 22 displays an example of the kind of images included in the recorded video, in which two laps 
at varying altitudes are taken around a grain silo. 

 

Figure 22: Original UAV footage of a silo, video frame example. 

From the original images, COLMAP is employed to extract the path and pose of the camera for each 
shot, as depicted in Figure 23. Also, in this picture it is possible to notice the segmentation process 
carried by SAM-HQ. 
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Figure 23: Left: UAV path reconstruction with COLMAP, instant-ngp GUI screenshot. Rigth: SAM-HQ 
silo segmentation background extraction. 

Ultimately, with the segmented images and the camera path as inputs, the NeRF model is trained. The 
subsequent captures presented in Figure 24 display various perspectives of the reconstructed model, 
where one can clearly discern the dents in the silo and its overall condition. 

   

Figure 24: GroundedSAM and instant-ngp 3D silo virtualization, instant-ngp GUI screenshots. 
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3.5 Deployment 

As introduced in 3.2, the software tool under development will be deployed in two distinct modes, 
depending on the specific requirements of each use case. The deployment strategies include a REST 
API service and as embedded software on the UAV onboard card. 

 REST API Service Deployment: This mode of deployment is designed for situations where the 
software tool does not need to be run in real-time. The software tool will be structured as a REST 
API service, providing a set of clearly defined methods of communication. It will utilize standard 
HTTP protocols, making it universally accessible across the network. This type of deployment 
allows for interaction with other software components, enabling the exchange of information 
(images and videos) and commands between the tool and other systems or actors, like CI 
stakeholders. 

 Embedded Software Deployment: In use cases where direct integration with the UAV is required, 
the software tool will be deployed as embedded software on the UAV onboard card. This 
deployment strategy is best suited for instances requiring low latency, high performance, and 
direct control over the UAVs functionalities. The software will be customized to operate within the 
specific hardware constraints of the UAV onboard card, ensuring optimal performance and 
reliability. This method allows for real-time processing and response, which is critical in scenarios 
involving immediate decision-making based on the UAVs sensor data. 

Both deployment strategies aim to provide a flexible, robust, and secure solution that can be tailored 
to meet the diverse needs of different use cases. The choice between the two will be dictated by the 
specific operational requirements, technical constraints, and security considerations of each case. This 
dual approach underscores our commitment to developing a versatile tool that can be seamlessly 
integrated into a wide range of operational contexts. 

3.6 UAV platform lab integration 

The UAV platform is a flying tool that approaches by air the facilities of interest, thus bypassing the 
restrictions imposed by ground-based transition on them. As shown in the following Figure 25, the UAV 
platform consists of three main parts: 

- The aerial vehicle that transits to the inspection point/site, 

- The camera that is the eyes for structure’s inspection, 

- The microcomputer, which is the brain of the tool. This unit runs an application that processes 
the images received/captured by the camera and is able to detect a number of problems in the 
inspected facilities. 
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Figure 25: UAV platform components. 

3.6.1 Hardware Specifications 

The hardware that UAV Platform tool consists of is of high specification for the most effective 
performance for its intended purpose. The following is a description of those specifications for each 
part of the tool according to the above segmentation. 

 The Aerial Vehicle, of the tool is a UAV and more specifically the ATLAS 204 N22 model [47], shown 
in Figure 26. This system is designed to deliver high reliability & mission oriented multi-rotor 
capabilities in the fields of defense, security & industrial surveillance applications. It follows the 
highest industry standards, with state-of-the-art mission command systems, encrypted RF links, 
redundant security systems and a configurable payload node. One of its most important features 
is that it is able to operate under harsh environmental & electromagnetic conditions and with 
minimal human power using advanced mission-oriented algorithms. 

 

Figure 26: UAV Atlas 204 N22 Model [47]. 

 When compact and folded, the dimensions of this device read 23 x 23 x 40 cm, embodying 
portability, and ease of transport. Upon expansion, it extends to 63 x 63 x 40 cm, unveiling its 
larger operational configuration. 

 This device bears a rated weight of 8.7 kg, accommodating the dual camera load with exceptional 
balance. Its prowess extends to a maximum take-off weight of 11.7 kg, demonstrating its capacity 
for carrying substantial payloads. 

 Flight autonomy offering an impressive span of 55 to 70 minutes in the air. This prolonged flight 
duration ensures ample time for complex tasks and missions. 
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 Telemetry and video transmission range excel, spanning a distance of 15 km to 20 km in Line of 
Sight (LOS) conditions. This extensive range opens avenues for expansive exploration and 
surveillance. 

 Ensuring resilience, the device boasts an IP43 rating for tightness, safeguarding its internal 
components against dust and water ingress. 

 Ascending to heights of 9,000 ft AMSL (3,000 m) is well within the device's capabilities. 
Additionally, it confronts wind speeds of up to 15 m/s (Up to 7 Beaufort scale10), showcasing its 
stability and control even in challenging conditions. 

 Velocity reaches new heights as well, achieving a maximum flight speed of 23 m/s (82 km/h), 
making swift aerial maneuvers attainable. 

 The device relies on GNSS (GPS & GLONASS) for positioning, ensuring accurate location data for 
precise navigation. 

 Secure communications are maintained through a frequency of 2.4 GHz, fortified with AES 128 & 
256 Encryption, safeguarding data transmission. 

 Operating temperature range spans from -10 °C to +50 °C, allowing the device to function 
effectively across various climates. 

 The device empowers users with automatic take-off and landing capabilities, managed by its 
sophisticated autopilot system. 

 Its power source consists of two Lithium batteries, each rated at 22.2V and 22,000mAh, providing 
the energy required for sustained flights. 

 For enhanced visibility, navigation lights in green, red, and white illuminate its path, ensuring 
safety and situational awareness. 

 The device's capabilities extend to payloads, accommodating Dual EO/IR/LRF payloads for 
versatile data collection and analysis. 

In conclusion, this device epitomizes technological excellence, blending compactness with 
expansive capabilities. Its dimensions, endurance, communication prowess, navigational finesse, 
and payload versatility converge to create a device ready to redefine exploration, surveillance, and 
data gathering across a diverse spectrum of applications. 

 Camera 1: The primary camera on the instrument is an EO/IR (Electro-Optical/Infra-Red) imaging 
mechanism, encompassing both standard visual and infrared detection capabilities. As they cover 
both the visible and infrared spectrum, EO/IR mechanisms ensure complete situational recognition 
during day, night, and in dimly lit scenarios. Distinct attributes of EO/IR setups include their capability 
for distant image capture and image steadiness. They should possess the proficiency to discern and 
track dynamic targets, even amidst adverse environmental scenarios. For the current tool, we've 
opted for the Z10TIR model, shown in Figure 27. All information regarding their characteristics can 
be found in [48], and is the source of the data provided below. 

 
10 The Beaufort scale is an empirical measure that relates wind speed to observed conditions at sea or on land. 
Its full name is the Beaufort wind force scale.  
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Figure 27: Camera Z10TIR [48]. 

Generally, the Z10TIR system is examined through three technical specifications parameters: 
Stabilization, EO camera and IR thermal imager. 

Stabilizing: The Z10TIR is mounted on an advanced 3-axis gimbal, offering precision motor rotation 
with a control accuracy of ±0.02°, driven by a specialized processor. Instead of the typical electrical 
slip rings found in many gimbals, this model employs a distinct mechanically restricted design with 
hidden wiring, enhancing data transmission stability and longevity. Vibration is effectively countered 
with four damping balls and a lightweight damping plate, ensuring smooth video capture. The gimbal 
allows for a full 360° rotation. This design ensures that clear and steady footage is achieved, even 
during high-speed UAV flights. 

EO camera: The EO camera features a 1/3" CMOS sensor, boasting a color sensitivity of 0.5lux@F1.6, 
2.48 million effective pixels, and delivers 1080p HD image clarity. This, along with superior optical 
zoom and rapid autofocus, is tailored for UAV-based photography. The Z10TIR integrates a precision 
ULIX thermal sensor from France, optimized for uncooled long-wave (8μm ~ 14μm) imaging with a 
25mm lens. This enables simultaneous capture and transmission of thermal and visible images. 
Users can choose between two thermal resolutions: the standard 640x480 and a lower-tier 384x288 
option. The ULIX sensor uncovers hidden thermal details, making temperature variations 
discernible. Such insights can highlight structural damages, and offer other crucial information often 
unseen by the human eye. 

IR thermal imager: The built-in IR thermal imager incorporates advanced algorithms for 
normalization, cross-correlation, and tracking. Paired with a recapture mechanism for lost objects, 
it ensures consistent target tracking. It also offers customizable on-screen display (OSD) features 
like adaptive gating, crosshairs, and trace information. The system can track at speeds up to 32 pixels 
per frame and covers object sizes ranging from 16x16 pixels to 160x160 pixels. With a minimum 
signal-to-noise ratio (SNR) of 4dB and position pulse noise values averaging below 0.5 pixel, the 
imager's precision and tracking performance are significantly enhanced. 

Some additional H/W parameters for this unit is following:  

 Working voltage  12V. 
 Dynamic current  800~1000mA @ 12V. 
 Idle current  800mA @ 12V. 
 Working environ.tmp.  -20℃ ~ +60℃. 
 Output  microHDMI(FHD output 1080P 30fps) / IP(1080P/720p, 

25/30fps)/Skyport. 
 Local-storage  TF card (Up to 128G, class 10, FAT32 or ex FAT format). 
 Photo storage format  JPG (1920*1080/1280*720). 
 Video storage format  MP4 (1080P/720P 25fps/30fps). 
 Control method  PWM / TTL / S.BUS/ TCP (IP output version /Skyport). 
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 Camera 2, of the tool is a LiDAR (Light Detection and Ranging) camera, also known as a LiDAR sensor 
or LiDAR scanner, is a remote sensing technology that uses laser light to measure distances and 
create detailed 3D maps or point clouds of objects, environments, and surfaces. It works on the 
principle of emitting laser pulses and measuring the time it takes for the pulses to reflect back from 
objects. LiDAR cameras are commonly used for various applications, including autonomous vehicles, 
mapping, surveying, forestry, archaeology, and more. 

LiDAR cameras emit short laser pulses of light in various wavelengths, often in the near-infrared 
range. These pulses are directed toward the target surface or object. By measuring the time it takes 
for the laser pulse to reflect back to the LiDAR sensor, the distance between the sensor and the 
target can be calculated using the speed of light. LiDAR sensors can capture multiple returns from a 
single laser pulse, allowing them to create detailed profiles of objects and surfaces, including 
multiple layers within vegetation, buildings, and terrain. The collected distance measurements are 
used to create a point cloud, which is a three-dimensional representation of the objects and surfaces 
in the sensor's field of view. Each point in the cloud represents a specific location in space and is 
accompanied by its x, y, and z coordinates. 

LiDAR cameras can generate highly accurate 3D maps of landscapes, buildings, and other 
environments. In the context of SUNRISE, it is a very critical tool in calculating the vegetation status 
where this must be controlled.  

For the current tool the GS-100C+ has been selected. Figure 28 displays the specific camera followed 
by its specifications. Specifications come from [49] . 

 

Figure 28: GS-100C+ Camera [49]. 

System (GS-100C+ Lidar camera) Specification: 
System Parameters 
 Accuracy  ≤10cm@110m.  -     Dimension  15.5*9.2*9.3cm. 
 Weight  1036g Storage 64 GB.  -     Max support  128GB TF card. 

 Working Temperature  -20°~＋55°.  -     Carrying Platform  Multi Rotor/VTOL. 

Laser Unit 
 Measuring Range  190m@10%.  
 FOV  70°the cirular view. 
 Laser Class  905nm Class1 (IEC 60825-1:2014).  
 Range Accuracy  (1σ @ 20m) 2 cm. 
 Laser Line Number  Equivalent to 64-beam.  
 Data  Triple echo,720,000 Points/Sec. 
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POS Unit 
 Update Frequency  200HZ Position Accuracy ≤0.05m. 
 GNSS Signal Type  GPS L1/L2/L5, GLONASS L1/L2. and 

 BDS B1/B2/B3, GAL E1/E5a/E5b. 
 Pitch /Roll Accuracy  0.015°. 
 Heading Accuracy  0.040°. 

Camera 
 FOV  80°. 
 Effective Pixel  24 MP. 
 Focal Length (mm)  15. 

Operation Efficiency Table 
 Flight Height (m)  Accuracy  Single Flight Operation(km²) 

50    ≤5cm     0.88 
70   ≤7cm      1.28 
110    ≤10cm    1.92 

 
 The Microcomputer, of the tool is a small dimensional computer with a total weight of 1.6 Kg and X-

Y dimensions of 125 x 104.6 mm, shown in Figure 29. It consists of a motherboard what is referred 
to as a carrier board which as a central processing unit integrates an entire computer system with 
surprisingly large graphics processing capability which is encased within a correspondingly sized card 
like the same motherboard is. 

 
Figure 29: NVIDIA Jetson AGX Orin system [51]. 

This system is based on the NVIDIA Jetson AGX Orin that is the card module which consist of the 
processing system, as mentioned above. The specifications of this system are examined through the 
individual modules of which it consists as follows:  

The Carrier board is the X230D [50] for NVIDIA Jetson AGX Orin, shown in Figure 30. A carrier board 
provides the essential connections and interfaces to harness the full capabilities of the Jetson 
module. It acts as a bridge between the Jetson and external devices, simplifying development, 
prototyping, and integration into diverse systems.  
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Figure 30: X230D Carrier board [50].  

The base specifications for the system are outlined below, providing a comprehensive overview of 
its key features and capabilities: 

 Firstly, the operating voltage is set at 12V, ensuring efficient and reliable performance. The 
system’s Jetson power modes span from 15W to 60W, offering a flexible range of power options 
to accommodate various tasks and demands. 

 To maintain accurate timekeeping, the system incorporates an RTC super cap with a capacity of 
200mF. This feature ensures that the system can retain time information even during power 
interruptions or outages. 

 Safety measures are also a priority, with both reverse voltage protection and overvoltage 
protection in place. These safeguards contribute to the system’s longevity and resilience by 
preventing potential damage from voltage fluctuations. 

 In terms of connectivity, the system has an HDMI out port, allowing for seamless external display 
connections. Additionally, there is a micro-USB 2.0 port and two USB 3.1 ports (Type A), offering 
versatile options for data transfer and peripheral connections. 

 The inclusion of an MCU (Microcontroller Unit) further enhances the system’s capabilities, 
enabling efficient control and coordination of various tasks and components. 

 Networking needs are well addressed, with two GbE ports (RJ45) utilizing the RTL8111 PCIe to GbE 
technology. These ports facilitate high-speed and reliable network connections, crucial for various 
applications. 

 For expansion, the system features PCIe x1 and PCIe x4 slots, denoted as FPC 22 pin (J37) and FPC 
40 pin (J20) respectively. These slots allow for additional hardware components to be integrated, 
enhancing the system’s functionalities and adaptability. 

 The system’s communication capabilities are comprehensive, including both CAN (Controller Area 
Network) RX/TX and CAN interfaces. Additionally, a UART interface is available, alongside two I2C 
interfaces for diverse communication needs. 

 To cater to imaging and visual data requirements, the system incorporates two CSI-2 interfaces. 
These interfaces support four lanes each and are equipped with 22-pin connectors, ensuring 
efficient data transfer and management for imaging applications. 

NVIDIA Jetson AGX Orin 32GB Module [51], shown in Figure 31, is an integrated system-on-module 
powered by the NVIDIA Ampere GPU architecture. This allows it to handle multiple simultaneous AI 
processes, thanks to its advanced deep learning, vision accelerators, rapid IO, and extensive memory 
bandwidth. With this card, developers can now tackle intricate AI challenges, ranging from natural 
language processing to 3D vision and sensor integration. Owing to its compact size, the NVIDIA 
Jetson AGX Orin 32GB Module is ideally suited for integration into UAVs (drones). This compactness 
provides powerful onboard AI capabilities without significant weight addition, making it a prime 
choice for advanced drone applications that demand real-time processing. 
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Figure 31: NVIDIA Jetson AGX Orin 32GB Module [51]. 

The module's comprehensive specifications are detailed below, showcasing its remarkable 
capabilities and cutting-edge components: 

 At the heart of this module lies a potent GPU featuring 1792 cores, built upon the NVIDIA 
Ampere architecture, and bolstered by 56 Tensor Cores. Operating at a frequency of 939MHz, 
this GPU delivers impressive graphics and computational performance. 

 Driving the module's processing prowess is an 8-core Arm® Cortex®-A78AE v8.2 64-bit CPU. This 
CPU's advanced architecture ensures efficient and responsive processing across a variety of 
tasks. 

 The module is further equipped with two NVDLA (NVIDIA Deep Learning Accelerator) units, 
elevating its deep learning capabilities. Additionally, a PVA v2 (Vision Accelerator) is integrated, 
enhancing the module's ability to handle vision-related tasks effectively. 

 Memory is of 32GB of 256-bit LPDDR5 RAM, achieving a remarkable data transfer rate of 
204.8GB/s. This memory configuration ensures smooth multitasking and rapid data handling. 

 For storage, the module incorporates a 64GB eMMC 5.1 storage solution, providing ample space 
for essential data and applications. 

 Video encoding and decoding are handled adeptly, offering the ability to encode in formats such 
as 4K60 (H.265), 1080p60 (H.265), and decode in formats like 8K30 (H.265) and 1080p60 
(H.265), among others. This prowess in video processing makes the module suitable for 
multimedia-rich applications. 

 Camera capabilities are extensive, supporting up to 6 cameras (16 via virtual channels*). With 
16 lanes of MIPI CSI-2 D-PHY 2.1 (up to 40Gbps) and C-PHY 2.0 (up to 164Gbps), the module can 
effectively handle camera inputs for various applications. 

 Connectivity options abound, including PCI Express configurations of up to 2 x8, 1 x4, and 2 x1, 
all supporting PCIe Gen4. USB connectivity comprises 3x USB 3.2 Gen2 (10 Gbps) and 4x USB 2.0 
ports, catering to a range of peripheral devices. 

 Ethernet connectivity is robust, with 1x GbE and 1x 10GbE interfaces available, ensuring reliable 
and high-speed network connections. 

 The module's visual output is remarkable, offering support for an 8K60 multi-mode DP 1.4a 
(+MST)/eDP 1.4a/HDMI 2.1 display. This versatility in display options enables seamless 
integration into various visual setups. 

 Diverse I/O options are accessible, including 4x UART, 3x SPI, 4x I2S, 8x I2C, 2x CAN, as well as 
PWM, DMIC, DSPK, and GPIOs, catering to a wide array of communication and interfacing needs. 

 In terms of form, the module has a compact 100mm x 87mm size, featuring a 699-pin Molex 
Mirror Mezz11 Connector and an integrated Thermal Transfer Plate, ensuring efficient heat 
dissipation and mechanical stability. 

 
11 offer a dense pin field with up to 270 differential pairs in a compact, low-profile hermaphroditic design 
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Collectively, these specifications paint a picture of a highly capable module, designed to handle 
intricate computations, advanced AI tasks, multimedia processing, and seamless connectivity across a 
diverse range of applications. 

Storage disk is also included, in the presented system. The disk that is used is the Samsung PM9A1 SSD 
1TB M.2 PCI Express 4.0, as shown in Figure 32. 

 

Figure 32: SSD 1TB Storage Disk [69]. 

Heat sink and a standard fan (80x80mm) are completed the microcomputer. Because of difficult 
graphical processing the microcomputer is under over-heating and an appropriate cooling system is 
necessary. This situation requires both a heat sink and a cooler fan. The heat sink covers all the surface 
of the NVIDIA module. Also, between two surfaces thermal grease is used for better temperature 
transfer from the module to the heat sink. 

3.6.2 Assembly process 

In this section is presented every assembly process for the UAV Platform as an inspection tool.  

 Microcomputer:  The following figure shows the assembly process of the system. In this figure, four 
(4) images can be distinguished, marked with the letters A, B, C and D.  

In the image with the letter A, all the individual parts that make up the microcomputer are 
enumerated as listed below: 

1. X230D (for NVIDIA Jetson AGX Orin) Carrier board, 
2. Storage disk Samsung PM9A1 SSD 1TB M.2 PCI Express 4.0, as shown in the Figure 33, 
3. NVIDIA Jetson AGX Orin 32GB Module,  
4. Heat sink,  
5. Standard fan (80x80mm),  
6. Protective sieve, 
7. Fan connection cable. 
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Figure 33: Microcomputer assembly process. 

In addition, two sets of four screws each and one small screw above the storage disk appears in the 
image. Those screws are used to fix the different modules. 

In the image with the letter B, the yellow arrow indicates the position where the storage disk is being 
placed on the carrier board. The disk is placed in a specific slot and the small screw above is used to 
lock it permanently in position.  

In the picture with the letter C, the red ellipse includes those units that make up the cooling system. 
The yellow arrow indicates the final appearance of cooling system that exists in the next picture with 
the letter D. 

In the finale picture with the letter D, a series of yellow arrows indicates the order in which the 
modules are placed on top of each other. In the upper right corner of the same picture the thermal 
grease is shown which is applied onto the surface of the NVIDIA module before the cooling system 
is mounted. Finally, the NVIDIA module together with the cooling system is placed on the carrier 
board and locked with the last four screws. The connection cable is connected to the corresponding 
socket and the microcomputer is ready.  

 Microcomputer mounting on UAV: The integration of the Jetson companion computer could be 
held on the outer surface of the drone after careful examination in order to ensure that it aligns 
with the drone's aerodynamics. This strategic placement is designed to minimize any adverse effects 
on the UAV's flight characteristics and due to limited workspace in the main hull. By securely affixing 
the Jetson on the external frame, it avoids interference with the critical airflow patterns that govern 
the drone's stability and performance. This integration not only preserves the drone's aerodynamic 
profile but also leverages the Jetson's computational capabilities for tasks like real-time image 
processing and decision-making without compromising flight efficiency.  
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Figure 34: Red Arrows indicate Jetson’s position on ATLAS Model. 

Also, vibrations in the outer area will be considered. Securing the Jetson companion computer from 
vibrations is critical to ensure its reliability and functionality within the drone's operational 
environment. To achieve this, a combination of vibration dampening and mounting techniques is 
typically employed. The Jetson is often enclosed within a specialized, shock-absorbing casing or foam 
padding that mitigates vibrations transmitted through the drone's frame. Additionally, carefully 
engineered mounting brackets or isolators, designed to absorb, and dissipate vibrations, are used to 
attach the Jetson to the drone's structure. These measures effectively shield the Jetson from the 
potentially disruptive effects of vibrations caused by the drone's motors and propellers, maintaining 
the computer's performance. 

 

Figure 35: Example of Jetson mounts to reduce vibration. 

3.6.3 Internal Units' Connections and communications 

The following Figure 36 shows the connection diagram of the internal modules of the UAV platform 
(ATLAS 204 N22 [47] based) related to the data transfer from the IP EO/IR camera (Z10TIR) to the 
microcomputer (NVIDIA Jetson AGX Orin system), as well as the connection of all of them to the 
communication system that links the inspection tool to the ground control station (GCS). 
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Figure 36: Inspection Tool: “Internal Connections Diagram and Communication”. 

The autopilot system (or Flight Controller) serves as the "brain" of the quadcopter, responsible for 
flight control and navigation. It connects to various sensors, including accelerometers, gyroscopes, GPS 
and magnetometers, which provide data about the quadcopter's orientation, movement and position. 
The autopilot also interprets sensor data and sends commands to the motors to adjust the 
quadcopter's position and attitude. The data that is interpreted from the sensors is called telemetry 
data and provides useful information about the drone’s state to the user. Telemetry involves the 
transmission of data, such as GPS coordinates, altitude, speed, and battery status, from the UAV to the 
ground station in real-time. This bidirectional communication enables operators to monitor the UAV's 
status, make critical decisions, and adjust flight parameters remotely. Autopilot, on the other hand, 
being the UAV's autonomous control system, processes telemetry data and executes predefined flight 
plans or responds to operator commands. It stabilizes the UAV, manages flight dynamics, and ensures 
safe and precise navigation. Autopilot systems empower UAVs with the ability to conduct a wide range 
of missions, from aerial photography and mapping to search and rescue, all while maintaining a strong 
connection to operators on the ground. According to the diagram, the external sensors that are 
connected to the autopilot’s appropriate ports are: GPS, Radio and Camera Controller/Camera. The 
GPS module is a crucial component for navigation and location tracking and is typically mounted on 
top of the quadcopter to ensure a clear view of the sky. The GPS module is connected to the autopilot, 
providing real-time location data, altitude, and heading information. Next, the radio link is a 
combination of the airborne unit (receiver) and ground unit (transmitter). The transmitter is integrated 
in the GCS, used by the operator on the ground, and controls the quadcopter remotely. It 
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communicates wirelessly with the quadcopter's onboard radio receiver. This connection allows the 
operator to send control commands to the autopilot, such as adjusting throttle, pitch, roll, and yaw. 
The receiver relays these commands to the autopilot, enabling manual control or intervention when 
necessary. Also, telemetry data and video feed are transferred to the ground station due to this radio 
link connection and bi-directional communication. 

Jetson, camera controller and radio receiver are all connected to an Ethernet switch, providing data 
transfer by combining multiple IP connections. This allows for efficient communication between 
components and can be essential in scenarios where large data volumes need to be processed in real-
time. The camera can provide live video feeds for remote monitoring, object detection, or mapping 
purposes, then the Jetson processes visual data and can relay relevant information to the autopilot for 
specific tasks.  

3.6.4 Relay Drone System 

In the SUNRISE system, in order to control the structure, it is necessary the site of eye to have visual 
contact between the UAV Platform and its operator. However, the structures are not in easily 
accessible areas and not in places where the above condition can be fulfilled. For this reason, when 
such an issue arises it must be solved. There are various ways to incorporate intermediate relay points, 
such as the installation of fixed ground transmission points, the use of a satellite (Star Link) or the use 
of a relay drone. Due to the impassability of the area, the use of fixed ground-based relay points is not 
a feasible solution. Also, Star Link does not consistently provide the necessary data bandwidth 
required. The solution that works for the SUNRISE system is the relay drone. Figure 37 below shows 
such a system, and is followed by its description. 

 

Figure 37: Relay Drone System in operation. 

A relay drone system is a network of multiple drones working together to achieve a common goal, with 
one or more drones serving as relay nodes to extend the communication or operational range of other 
drones. They achieve this enhancement by functioning as nodes that relay communication between 
the base station and the operational drone, extending the line of sight (LOS). This involves amplifying 
the communication signal at each node to compensate for signal power loss due to distance traveled. 
Additionally, they establish a direct line of sight path between the base station and the operational 
drone, which further aids in communication.  
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The network of the project consists of one operational drone and one relay; the latter will transfer 
video and telemetry information beyond the pilot’s line of sight, i.e., remote areas to establish a 
communication link, extend the operational range of drones, or provide additional sensor coverage. A 
central ground control station controls the entire relay drone system. The operator can manage the 
mission, coordinate the relay nodes, and make decisions based on the information received from the 
data-carrying drones. Relay drone systems often require dynamic coordination as drones move and 
adapt to changing conditions. The system may employ algorithms and protocols for path planning, task 
allocation, and re-routing of data as necessary. Once the mission objectives are achieved, the relay 
drone system may return to the base or continue to operate in a standby mode until needed again.  

The relay drone may communicate with the operational drone in real time through the LOS radio and 
transmit it to the control station.  
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4 User interface for remote infrastructure inspection  

The primary goal of the user interface (UI) for remote infrastructure inspection is to furnish users during 
the inspection real-time images about areas/components/points of failure of a Critical infrastructure 
like damaged components, structural issues, corrosions, obstructing vegetation status etc. This is 
achieved by analyzing image and video feeds and presenting outputs from AI-assisted components into 
the UI. The design and implementation of the user interface as well as the inspection functionalities 
provided that required by SUNRISE project, have been based on the following components: 

 Two inspection data sources which are a UAV platform and satellite imagery. Both systems through 
AI technologies can detect the types of problems CI operators are concerned about. 

 The interconnection and exploitation of any legacy systems which may at the CI of our interest 
 The visualization of the imports in the form of lists of events. These imports are data that have 

already been annotated by the corresponding inspection tool.  
 The reporting services where statistics about the inspections as well as accessing historical 

information will be provided – if existing. 

4.1 General context 

As main functionalities, the user interface (UI) tools and dashboards furnish a dynamic web platform, 
empowering end-users to have a complete engagement with all inspection infrastructures’ 
components of SUNRISE system. This module incorporates contemporary tools and presents a map 
where during inspection, constantly refreshed with real-time data on inspection point. This feature 
enhances the inspection process, enabling end-users to accomplish a full range of inspect activities, 
receive event-driven messages, that means anomalies detection with use of AI algorithms-based 
methods. 

Additionally, data obtained from both inspection sources, (UAV platforms and satellites), referred also 
as AI-assisted remote inspection tools, has been meticulously annotated to encompass all pertinent 
inspection-related information derived from the inspection tool. 

Finally, the developing user interface and potential legacy CI systems integrations represent the 
SUNRISE platform's primary interface, catering to in-field inspection even in difficult access point by 
man. Upon logging into the UI, each platform user with an assigned role is gain access to their 
application area. The UI operators have been empowered to: 

 Visualize data tied to geographical locations on an interactive map. This map can be manipulated 
using tools like panning and zooming. 

 Generate CI maps by incorporating custom points (referred to as Points of Interest or POIs) and 
areas of significance (known as Areas of Interest or AOIs). These additions can pertain to elements 
not yet represented on the existing map. 

 Overlay various types of data using geo-referenced coordinates such as various topographical data, 
ground, single and aggregated data (events-alerts), geolocation trails, points, and regions of 
interest. 

 Multimedia content from SUNRISE's subsystems— like images and videos files—can be displayed 
through the interface. 

 Real-time presentation of events and incidents will be showcased in a user-friendly manner. 

Overall, the user interface serves as the primary gateway for platform users to engage with monitoring 
and operational aspects of inspection, facilitating efficient access to infrastructure's critical data and 
inspection's functionalities. 
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4.2 Architecture: high level design 

The selected architecture on which the development of the UI is based is shown in Figure 38 and is 
described through the numbered bus lines as follows: 

1. Incoming messages/events from UAV/Satellite systems are received. All this data is routed through 
an MQTT bus system. Within this system, the data is systematically queued, ensuring a sequential 
flow. 

2. The Backend Coordinator processes all incoming messages/events. It retrieves the data at the front 
of the MQTT queue. 

3. All incoming messages/events are internally stored in the Backend Inventory (MongoDB server). 
4. The Backend Coordinator sends live or historical data to the Dashboard UI for visualization and 

responds to historical data requests from the Dashboard UI. 
5. The Dashboard UI communicates with the Google Maps infrastructure to render maps, markers, 

points of interest, and heat maps, among other elements. 
6. The Backend Coordinator sends requests to the Reporting Subsystem in order to compile the 

requested data and then receives the results. 
7. The Reporting Subsystem and the Backend Inventory communicate with each other in order 

processes the requests, and subsequently transmits the results to the Backend. 
8. The Dashboard UI obtains an Access Token from the Identity Server to access backend APIs. Access 

to the UI is exclusively granted to authorized users, with authentication and authorization handled 
by a dedicated Authentication/Authorization unit, responsible for controlling user access and 
logging into the application. 

9. Additional public services can offer crucial meteorological data, weather forecasts, maritime 
information, alerts, and more for visualization within the Dashboard UI. 

It is important to note that the connection between the Backend Coordinator and the MQTT system is 
bidirectional. If any data needs to be transmitted from the application outward, the Backend 
Coordinator places it in MQTT, within the corresponding queue. 
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Figure 38: UI Architecture Diagram. 

Figure 38, above, illustrates the dashboard UI tool, which operates as a web application. The 
functionality of this dashboard is underpinned by a robust backend API. This description is elaborated 
in two distinct subsections: Internal Components and Technical Specifications. 

4.2.1 Internal Components 

The dashboard UI consists of several internal components, as listed and described below. Each 
component supports specific system and end-user requirements. 

 Maps and Events (Alert) Management that utilizes maps and geospatial services to offer 
observation and orientation capabilities as the basis of understanding the environmental context 
and situational awareness. It provides a main interface of inspection activities. It presents several 
information sets in the same visualization space, such as topographic information, sensor placement 
and direction, alert notifications, and provides a variety of tools and means for interacting with those 
elements. The user will be able to pan and zoom around the map and interact with it by a set of 
tools that perform certain actions, such as showing or hiding independent layers that visualize the 
different distinct types of information as overlays to the map background. It will allow users to show 
alerts and access their underlying metadata and historical data. 

Map projections will be further enhanced with by external data provided by the Digital Interfaces 
and Integration of Existing Infrastructures module. Different types of data streams from external 
sources will be integrated and modelled appropriately to user friendly visualizations. Different data 
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types will also be presented through different layers enabling the user to select the ones that are 
useful for the current view and toggle their visibility. 

Map data is constantly updated from the UI tools and dashboards backend subsystem and Existing 
Infrastructures.  

 

Figure 39: Map Management Sequence Diagram. 

As shown in Figure 39 above, the Google Maps and the Digital Interfaces and Existing Infrastructures 
are updated on the map data constantly. The UI user visualizes the collected data and can tailor the 
UI to the specific needs and operational conditions, by viewing, examining, and customizing the map 
(select/save POI/AOI) and selecting data presentation layers.  

More specifically, as soon as the AI-assisted remote inspection tools system detects anything, it 
sends a detection event message on the “events” topic of the MQTT message broker. The backend 
persists data published, processes it, and publishes the events on the UI subsystem by showing a 
new Event, through the Event Management sub-component functionality. The Event Management 
Sequence Diagram is shown in the following Figure 40.  
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Figure 40: Event Management Sequence Diagram. 

The user will be able to access old events from the UI. The user requests to access historical events 
from the Historical Management sub-component functionality. Backend Coordinator receives the 
data from Backend Inventory after a historical Data Request to it. Finally, the Historical Management 
collects the data from the backend Coordinator and presents it in the UI. The Event Management of 
Historical Data Sequence Diagram is shown in the following Figure 41. 

 

Figure 41: Event Management (Historical Data) Sequence Diagram. 

 Backend Inventory Management provides management capabilities to the backend subsystem 
repository/registry of events and metadata and serves as an access point to the subsystem’s event-
alerting layer. The component will be able to organize all types/categories of event metadata and, 
through the provided UI, it will enable users to view group types/categories of events and provide 
access to individual event information such as type of event data, category of events, geospatial 
data, and other deployment information, stored in the Backend Inventory. 

 Authentication, Authorisation and Audit Logging component, is responsible for intelligently 
controlling access to UI tools system functions and interfaces (both GUI and REST-API), enforcing 
policies, and keeping an audit trail of events happening. Based on assigned roles, authenticated 
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users will be able to access different UI system functions and interfaces. The audit logging 
mechanism will log several types of information that the system generates during normal execution, 
such as data changes and actions/commands invoked by the end-users. 

Structuring the UI web application to support a security token service (Authentication, Authorization 
and Audit Logging component) leads to the architecture and protocols shown in Figure 42. 

 

Figure 42: Security Token Architecture and Protocols [70]. 

The Security Token Service (STS), encompassing Authentication, Authorization, and Audit Logging 
components, will feature a dedicated administration web application. Through this Administration 
UI, we will oversee all internal aspects of the service, including Clients, Resources, Scopes, Users, 
and Roles. The initial interface of the application is depicted in the accompanying Figure 43. 

 

Figure 43: Security Token Service Administration UI. 

Among the pivotal functionalities, the Role Management feature stands out prominently. Each role 
will be linked with specific access rights within the Dashboard UI application. A single role may 
encompass multiple users, thereby granting access to the Dashboard UI according to the access 
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rights inherited from the roles to which users belong. The subsequent interface portrays the central 
screen of the Role Management feature within the Security Token Service (STS). 

 

Figure 44: Roles Management UI. 

Our approach encompasses the management of the user repository within the Security Token 
Service (STS) infrastructure. The primary interface of the user management feature will resemble 
the illustration below.  

For each entity management screen, a consistent structure will be maintained. This structure will 
include an 'Add Entity' button to facilitate entity addition, an input box to enable search 
functionality, and a list displaying the corresponding entities (in this instance, users). From this list, 
administrators can select and modify the desired entity (user). This pattern will be consistently 
applied for the management of various entities, such as clients, resources, scopes, users, roles, and 
more. 

 

Figure 45: Users Management UI. 

Upon selecting the appropriate entity (user), the administrator is directed to the edit entity screen. 
This interface adopts a classic web form, encompassing all fields pertinent to the entity (user). Each 
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field employs standard web components, such as an input box for text, an on/off switch, a calendar 
picker, or a dropdown menu. 

If the entity (user) establishes a one-to-many relationship with another entity (e.g., role) 
administrators can seamlessly navigate to a dedicated web form representing this connection by 
clicking the corresponding “Manage Entity” button. 

Each form is equipped with a 'Save Entity' button, facilitating the preservation of modifications, and 
enabling a return to the previous screen. These functionalities are visually represented in the 
accompanying Figure 46. 

 

Figure 46: Edit User UI. 

 Reporting component responsible for preparing and presenting statistical information from data 
stored in the Backend layer and for providing predefined reports on request. Data for predefined 
reports will be prepared through processing and aggregation of collected system and user activity 
data, and presented using appropriate, predefined visualizations (e.g., Tables, Line charts, Bar 
charts, Pie charts, Heat maps). End-users can export displayed reports in several formats (csv, xlsx, 
pdf, etc). 

 Video Streaming responsible for providing flexible and scalable video surveillance capabilities of 
remote video, audio, and event streams from the AI-assisted remote inspection tools. Multimedia 
content must be encoded in a suitable format to be displayed in a web browser.  

 Backend Coordinator serving as a middleware component that manages and orchestrates the 
streams of geo-data flows between the UI and the Backend Inventory Management, such as event 
handling and presentation. It will subscribe to the “events” MQTT topic. As soon as the AI-assisted 
remote inspection tools published a detection event message it will process the event and upload it 
to the Backend Inventory Management. As soon as the information is ready it will inform the UI that 
the event is ready for visualization. 
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4.2.2 Technical Specifications 

The technology stack consists of: 

 Angular (often referred to as "Angular 2+" or simply "Angular") is a modern front-end web 
application platform developed by Google. It is the successor to AngularJS (Angular 1.x) and was 
rewritten from the ground up to address the limitations and challenges of its predecessor. Angular 
offers a comprehensive set of tools and features for building dynamic, single-page web applications 
(SPAs) and progressive web apps (PWAs). 

 ASP.NET Core is a free and open-source web framework developed by Microsoft for building 
modern, cloud-based web applications. It is the next generation of ASP.NET, and was first released 
in 2016. 

ASP.NET Core provides a modular architecture that allows developers to build web applications 
using a variety of languages, including C#, F#, and Visual Basic. It is cross-platform and can run on 
Windows, Linux, and macOS. 
ASP.NET Core includes several key components, including the MVC framework for building web 
applications, the Razor templating engine for creating views, and the Entity Framework for working 
with databases. It also includes support for modern web development technologies like Web API, 
SignalR12, and WebSockets.13 

 MongoDB is a widely used open-source, NoSQL (non-relational) database management system, as 
described in [52]. It is designed to store and manage large volumes of data, especially unstructured 
or semi-structured data, in a flexible and scalable manner. MongoDB diverges from traditional 
relational databases by using a document-oriented data model instead of tables with fixed schemas. 
This allows developers to work with data more dynamically and adapt to changing data structures.  

The Sunrise system will use the MQTT messaging protocol to handle JSON object type events. In this 
case no adaptation system between MQTT and MongoDB is required, because this DB stores data 
of this type. 
MongoDB is commonly used in various applications, including web and mobile applications, content 
management systems, data analytics platforms, and more. Its flexibility and scalability make it 
suitable for scenarios where data structures are dynamic and need to accommodate growth. 
However, while MongoDB offers benefits, it is important to consider factors like data modeling, 
indexing strategies, and data consistency based on the specific requirements of your project. 

 Google Maps JavaScript API is a free, web-based mapping service provided by Google. It allows 
developers to embed maps, geolocation, and other location-based features into their web 
applications using JavaScript. The API provides a number of tools and services for building custom 
maps, markers, and other location-based features. 

The Google Maps JavaScript API is widely used in web development, particularly for location-based 
applications such as delivery services, ride-sharing apps, and real estate listings. It is free to use for 
most applications but does have usage limits and pricing for high-traffic applications. 

 MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol designed for IoT 
(Internet of Things) devices and applications that require efficient, real-time communication 
between devices and servers. It was first developed in 1999 by Andy Stanford-Clark of IBM and Arlen 
Nipper of Eurotech and has since become a widely adopted protocol for IoT devices. 

 
12 WebSockets is an abstraction over some of the transports that are required to do real-time work between 
client and server. 
13 SignalR is a computer communications protocol, providing full-duplex communication channels over a single 
TCP connection. 
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MQTT uses a publish-subscribe messaging model, in which devices can publish messages to a central 
server or broker, and other devices can subscribe to receive those messages. This model allows for 
efficient communication and reduces the need for constant polling and data transmission. 
MQTT is commonly used in IoT applications for a variety of purposes, including sensor data 
collection, device control, and monitoring. It is supported by many IoT platforms and frameworks 
and is considered a key technology in the development of the IoT ecosystem. 

4.3 Dashboards mockups  

The SUNIRISE login page presents a secure gateway to access the platform. Users input their credentials 
– a unique combination of username and password – to verify their identity. The page's design is 
intuitive, with fields for entering credentials prominently displayed. Once verified, users gain 
authorized entry, unlocking the platform's features and personalized /CI related content. In case of 
forgotten credentials, the page also provides options for password recovery or account assistance. 

 

Figure 47: SUNIRISE login page. 

After granting access to the SUNRISE platform, the user navigates to the first page with the GIS Map 
and relevant layers of the infrastructure of their responsibility. On the right side a list of all the events 
that have been detected is presented with some fundamental information regarding each specific 
event. 
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Figure 48: first page with the GIS Map and relevant layers. 

By clicking the marker on the map or an event on the Events List on the right side, the annotated 
images from the inspected infrastructure are shown on a pop-up window in the main screen of the 
GIS. This pop-up window also presents the fundamental info such as event type, time stamp, location, 
source of inspection etc.  

 

Figure 49: Event Presentation (A). 
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Figure 50: Event Presentation (B). 

 

 

Figure 51: Event Presentation (C). 

At the upper part of the map a ribbon with distinct categories is shown. For example, we can have the 
list of the events by source category (Satellite – UAV). 
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Figure 52: list of the events by source category (Satellite). 

 

Figure 53: list of the events by source category (UAV). 

On both the top ribbon and the vertical ribbon situated on the left side, users can access analytics 
tools. These tools enable them to select from a range of graphical representations to visualize analytics 
data on a monthly, semesterly, or yearly basis. Users can utilize these graphics to depict correlations 
between events detected via UAV or satellite observations. Additionally, they can categorize these 
events based on types such as corrosion events, leakages, obstructive vegetation, and more. 
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Figure 54: Analytics View (A). 

 

Figure 55: Analytics View (B). 
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4.4 Integration and validation 

Within SUNRISE, an MQTT system with a central MQTT broker and a publish-subscribe mechanism 
serves as the integration pathway for ingesting data from three distinct inspection data sources. These 
sources include the UAV platform, satellite, and potentially any existing legacy systems within the 
infrastructure of interest. If integrating a legacy system, an adaptation mechanism may be required to 
modify its outgoing data type accordingly. 

The three data sources, as previously mentioned, act as publishers, generating messages containing 
the data they intend to share with subscribers. The sole subscriber in this scenario is the Backend 
Coordinator of the dashboard system, which seeks to receive the data. Typically, a subscriber conveys 
its interest by issuing subscription requests to the MQTT broker. 

The MQTT broker serves as a central intermediary that enables seamless communication between 
publishers and subscribers. Within the SUNRISE system, this broker receives messages from the 
inspection data sources and effectively transmits them to the dashboard system. 

 

Figure 56: Integration Diagram. 

The Integration Process described as follow: The Publishers establish a connection to the MQTT broker 
and authenticate themselves using credentials. Once connected, publishers can start sending their 
messages. The MQTT broker receives these Messages containing data and topic information and 
temporarily stores them. Subsequently, the MQTT broker routes the messages to subscriber based on 
subscriber's interest. On data integration the subscriber receives the messages that containing 
relevant data and proceeds as needed. Integration can involve storing data in databases, triggering 
actions, generating notifications, or updating visualizations. 

On Data validation in an MQTT system, a crucial step is to ensure that the incoming data from 
publishers is accurate, consistent, and conforms to the expected format. This helps prevent erroneous 
data from being distributed to subscribers and ensures the overall integrity of the system. Data 
validation in an MQTT system is based on several parameters which are Payload Format Validation, 
Subject Validation, Data Range and Constraints, Message Size Validation, Protocol Validation, Quality 
of Service (QoS) and Identification, Flag Validation Preservation, Security Checks and Error Handling. 
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4.5 Deployment 

The UI will be deployed in a Virtual Machine system and will be deployed in a Cloud. All internal 
components will be deployed in the same way. The operating system that is selected for the SUNRISE 
dashboard system is a Linux system. 

There are several reasons why Linux systems are preferred: A Linux system is an open-source operating 
system, provides a high level of customization as well as stability and reliability. Also, a Linux is 
inherently more secure due to its design and the open-source community's active contributions to 
identifying and fixing vulnerabilities. Regular updates, robust permission models, and security features 
like SELinux contribute to its security reputation. The Linux supports a wide range of hardware 
architectures and devices, is highly efficient and optimized for performance, has a vast and active 
community, is cost-effective as there are no licensing fees associated with using it, offers a rich 
ecosystem of open-source software applications, tools, libraries, and development frameworks as well 
as Cloud Compatibility. 

Particularly for the deployment of the SUNRISE UI we will use the Ubuntu 22.04.3 LTS that is the latest 
LTS version of Ubuntu. LTS stands for long-term support, which means five years of free security and 
maintenance updates, guaranteed until April 2027. 
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5 Pilot trials execution 

The results from the "Pilot 0 - Lab Validation" have been showcased in three demonstrative sessions 
to the Critical Infrastructure (CI) stakeholders, each corresponding to the primary sections of this 
document (Sections 2, 3, and 4). The overall feedback received has been favorable, and the insights 
gathered from the comments have been instrumental in further refining the proposed solutions. 

The execution of "Pilot 1" and "Pilot 2" is scheduled for the second and third years of the project, 
respectively. Detailed descriptions of these pilots can be found in the deliverable D7.1. Since the 
drafting of D7.1, there have been no significant setbacks or changes to the presented plans, and thus, 
all proposed scenarios are still deemed feasible. 

One notable point to highlight is the observation that, in certain scenarios, particularly at the HDE 
facilities, it might be challenging to maintain direct visual contact with the UAV due to the terrain's 
topography. To address this control and communication potential issue, the UAV relay system, as 
described in Section 3.6, have been proposed. 
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6 Conclusions 

This document, as the first technical implementation outcome from SUNRISE WP7, has provided a 
comprehensive overview of the tools and methodologies developed for the remote inspection of 
critical infrastructures. D7.2 will serve as a foundational input for the subsequent D7.3 and other WP7 
deliverables, setting the stage for an iterative and evolutionary process. 

Firstly, the satellite footage inspection tool and the UAV footage inspection tool offer a high-level 
architectural design that is both robust and scalable. The modular approach ensures that each 
component of the tools can be refined independently, allowing for flexibility and adaptability. The 
laboratory validation of both modules indicates a successful implementation, with the deployment 
strategies ensuring a wide range of operational contexts can be addressed. 

Beyond the positive laboratory results validating the models, it has been showcased how the 
substantial advancements in computer vision and text analysis fields can be implemented and 
transitioned into wide-ranging real-world solutions. This aids in narrowing the gap between academic 
developments and industrial products. 

Secondly, the laboratory integration of the UAV platform lays the foundation for an optimal 
combination of hardware and software components to ensure efficient and effective inspections. 

Lastly, the development of the user interface emphasizes user-centric design. The mockups and high-
level architectural designs ensure the interface is intuitive and user-friendly. The integration and 
validation processes underscore the interface's reliability, ensuring users can effectively interact with 
the satellite and UAV footage inspection tools. As the integration of analysis tools with graphical user 
interfaces progresses further, the task of establishing more detailed user guidelines will be addressed 
in subsequent deliverables. 

In summary, the tools and strategies presented in this document represent a significant step forward 
in the remote inspection of critical infrastructures, having achieved the goal of implementing PoCs with 
a TRL5 or higher at this project stage. The modular designs, combined with state-of-the-art 
technologies and user-centric interfaces, ensure that the SUNRISE project is well-positioned to address 
the challenges of inspecting critical infrastructures in a variety of contexts. As the project progresses, 
it will be essential to continue refining these tools based on feedback from stakeholders and real-world 
testing scenarios. 
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